
7AD-A137 956 SOFTWARE ULITY MEASUREMENT
FOR DISTRIBUTED

SYSTEMS i/
VOLUME 2GUIDEBOOK F..(U) BOEING AEROSPACE CO SEATTLE

U L WAl T P BOWEN ET AL. JUL RC1 RADC-TR S -,175-VOL-llIIhlllllhlllIIEIIIlllI

EII~llElhllhEE
EElhlEElllhllI
EIEEEIIEEEIIIE
lElllEEEEIhEEI

&L22

3.o

k';.,-,

.pm..

. o

% % %

.5

.. :,_,:.;_ ,.................. ._.....:.,.... +.............. 5.

- ' w " - - -- , + ' %,b ,' * .- - -'. +... "-?''*.' . '..- . *' .- -. . '' . . '' ' .! , a ;,'.'::-'+"::.; ;x,,¢,g+ ; t :;A*./. :4. : : ::. * * . :* . :**,- * ... ' :* :.

cIiI
RADC-TR.3-175, Vol II (of three)
Final Technical Report
July 1983

"0 SOFTWARE GUALITY MEASUREMENT FOR
, DISTRIBUTED SYSTEMS Guidebook for

Software Guality Measurement

Boeing Aerospace Company

Thomas P. 1owen, Jonathan V. Post, Juitlen Tsal, P. Edward Presson
-- and Robert L Schmidt

- DTIC
-* . _:._ APPROD FOR PUBLIC REASE," DISTRIBUTION UNLIMITED ELECTE

S FEB 16 94
S B

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441

DE.C FILE COPY 84 6 15 014

a~~~~ - 7-7777".-*'

This report has been reviewed by the RADC Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS it will
be releasable to the general public, incluling foreign nations.

RADC-TR-83-175, Vol II (of three) has been reviewed and is approved for
publication.

APPROVED:

JOSEPH P. CAVANO
Project Engineer

APPROVED:

. RONALD S. r SO
Acting Chief, Command & Control Division

FOR THE C~OMMANDER: 4 /

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list,
or if the addressee is no longer employed by your organization, please notify
RADC (COEE), Griffiss AFE NY 13441. This will assist us in maintaining a current

. . mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document requires that it be returned.

.7"..'/

-a .•

.- ;.. - . C

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (llho Dee.8E0tred)_

READ [ISTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COUPsETEG FORM

I. REPORT NUMGEIR 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMIER

RAD-TR-83-175. Vol II (of three_
4. TITLE (and Subtitle) S. TYPE OF REPORT PERIOD COVERED

SOFTWARE QUALITY MEASUREMENT FOR DISTRIBUTED inae T repo't
SYSTEMS Guidebook for Software Quality 6. PERFORMING O.G. REPORT UMER

Measurement /A
7. AUTHOR(e) S. CONTRACT OR GRANT NUMUER(.)
Thomas P. Bowen P. Edward Presson
Jonathan V. Post Robert L. Schmidt F30602-80-C-0330 L.
Juitien Tsai

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Boeing Aerospace Company 62702F
PO Box 3999 55812030
Seattle WA 93124 55812030

I!. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (COEE) Tnlv 183 PAGES-] "AUMP PAGES

Griffiss AFB NY 1"3441,280 280
14. MONITORING AGENCY NAME S ADORESS(If diflerent from Control l Office) IS. SECURITY CLASS. (of thl report)

Same UNCLASSIFIED
IS8. DECLASSI FICATION/DOWNGRADINGN/A SCHEDULE-. .

16. DISTRIBUTION STATEMENT (of this Report) SCEDULE

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. It dffer n a n' Report)

Same

I. SUPPLEMENTARY NOTES

RADC Project Engineer: Joseph P. Cavano (COEE)

IS. KEY WORDS (Continue en reverse aide If necesary and Ildentify by blackh number)

Software Quality Software Survivability
Software Metrics Software Expandability
Software Measurement
Software Interoperability
qnfrwArniita Utinh lty

20. ABSTRACT (Contirnu en revore. dde It necessary end Identify by block number)

Software metrics (or measurements) which are used to indicate and predict
levels of software quality were extended from previous research to include
considerations for distributed computing systems. Aspects of the products
of software life-cycle activities which could affect the quality levels of
software, and metrics to measure them, were identified. Two new quality
factors, survivability and expandability, were validated. A Guidebook for
Software Quality Measurement was produced to aid in setting quality goals, - -

DD I '? *A 1473 EDITION OF I NOV 61 IS OBSOLETE UNCLASSIFIED
SECURITY CLA&RIFICATION OF THIS PAGE (When Onto Bo# t.%

., -......,.. -........ /. ,..-...,-.... ,.,.-......... ,..,-.-,.

% %. %*-'~.-~* *

INUCLASSIFIED
MWOWTV CLASSFICAWU OF YNSS PA6m Dife amu

applying mtric measurements, rand making quality level assessments Now

metrics for interoperability and reusability were also included In the
guidebook. _ f, 'T v 0 ,e.. esc, b)e- _3 &A ca. h,/ . 60 ,A

Se194 a 8, • 7

DTIC ..
1101, OL4

M 10esslon For c ne

NTIS GR.A&i
DTIC TAB Q-
Unannounoed 40

J ustificat ion

D IC

Distribution/

~Avail and/or k,

, $Speolal"!

FEI fW.

SUCURqITY CL-ASSlPlCAYiOl OFr Yu.,. PA-QE(tW7, Data Er.. **'

.,- .. .k...

Access ,io 'n ' Fo lop .r- , ". -_," ,"'.,'. -+- ,< ,, . ;,,.,.". ':'..'...", .
I S l G II l I i :i' [I-W - i .i ' 7

r
'l

PREFACE

This document is Volume 11 of three of the Final Technical Report (CDRL A003) for the

Quality Metrics for Distributed Systems contract, Number F30602-80-C-0330. The
contract was performed for Rome Air Development Center (RADC) to provide methodol-
ogy and technical guidance on software quality metrics to Air Force software acquisition

managers.

The final report consists of three volumes as follows:

Volume I - Software Quality Measurement for Distributed Systems - Final Report

Volume U - Guidebook for Software Quality Measurement

Volume III - Distributed Computing Systems: !mpact on Software Quality

The objective of this contract was to develop techniques to measure and predict software
quality with a perspective on distributed systems. The techniques developed were to be

assembled into a 'landbook" which describes the step-by-step procedures required to

implement the quality measurements. Various methods of assembling a handbook were

investigated and it was decided that the best approach would be to use the "Software

Quality Measurement Manual" (RADC-TR-80-109), produced by a prior quality metric
research contract, as the baseline. Volume H of this final report is therefore an update of
RADC-TR-80-l09, incorporating results of this contract and the results of contract

F30602-80-C-0265, 'Software Interoperability and Reusability". In addition, many
editorial changes and corrections were made, and all metric worksheets, tables, and
definitions are included as appendices so that all material required to implement software
quality measurements is included in this document. .\

Volume I of this report describes the results of the research effort conducted under this."

contract. Volume III of this report summarizes the analysis performed to determine the

effect of distributed computing systems on the quality metrics technology.

.. ,,._% J

-" -. " " -" ,.. ¢. ./' ," o. ' " '.-,-° € -" - "° o'2'g ' ,° "° - ""- ,'% " -""" - "'°- -""" - """. "'- - °'"- ,'-a• " '' -" . ,
,:,, ,, . > .,. ,,..,... .:,. .,: .,.....,,. ... ,.?,.,..,.... ..,,...?,,... .,. ,. . .,,,, ,... .. .',
• ._,_ ,,.-.,, . % , ,%, ,', ,.'., , .. ,..,. -,, . '.. ,-.-. , ., ... , •. ,a

TABLE OF COTET

1.0 INTRODUCTION 1-1
1.1 Purpose 1-1
1.2 Scope 1-2
1.3 Quality Measurement in Perspective 1-2
1.4 Guidebook Organization 1-4
1.5 Recommended Use of Guidebook 1-7

2.0 IDENTIFYING SOFTWARE QUALITY REQUIREMENTS 2-1
2.1 Introduction 2-1
2.2 Identifying Important Quality Factors 2-4

2.2.1 Procedures 2-4
2.2.2 An Example of Factors Specification 2-13

2.3 Identifying Critical Software Attributes 2-16
2.3.1 Procedures 2-16
2.3.2 Example of Identifying Software Criteria 2-23

2.4 Establishing Quantifiable Goals 2-25
2.4.1 Procedures 2-25
2.4.2 Example of Metrics 2-36

2.5 Evaluation of Development Plan 2-39

3.0 APPLYING METRICS 3-1

3.1 When to Take Measurements 3-1
3.2 Sources of Quality Information 3-3
3.3 Application of the Metrics 3-5
3.4 Techniques for Applying Metrics 3-9

4.0 ASSESSING THE QUALITY OF THE SOFTWARE PRODUCT 4-1
4.1 Introduction 4-1
4.2 Inspector's Assessment 4-1
4.3 Sensitivity Analysis 4-2
4.4 Use of Normalization Function to Assess Quality 4-4
4.5 Reporting Assessment Results 4-13

TABLE OF CONTENTS

REFERENCES

APPENDICES
A Metric Worksheets A-I
B Metric Tables B-I
C Metric Explanations

C-I

." ,-..

"a'."'

C-1a

*. 4,% % % %

.-
a .- s,• ';, ,, ,'_. ,'. ,', .,' _.'; ,"; .'. ,': ".'. .'. "v .'v .' .' ..' . " ,.v .- " . " " " - " , ". ". " . "., ., ,-, ,, .- . .- ". ",. ".- , " . -. -,. ,: ' . . . • '

i I . ,- a % , , .- - , , , .% , ,7 , • . -.. - . , ,, -, . , - . • , -. . , ', -, % , - ., • - . -. . - . , , - ; , -. . • , , - , , ' . ,, . . .' , . , - , % " -, " - , ..

LIST OF FIGURES

2.1-1 Software Quality Framework 2-2
2.2-1 Benefit Tradeoff: Quality Costs vs Cost Savings 2-10

3.1-1 Timing of Metrics Application 3-2
3.2-1 Sources of Quality Metric Data 3-4
3.3-1 Application of the Metric Worksheets 3-8
4.4-1 Normalization Function for Flexibility During Design 4-11L
'4.4-2 Determination of Level of Confidence 41

LIST OF TABLES

Table
NumberPat

1.3-1 How Software Metrics Complement Quality Assurance 1-6
1.5-1 Index of Three Approaches to Specifying and Assessing Software Quality 1-8

$2.1-1 Software Quality Factors and Criteria 2-3
2.2-1 Software Quality Requirements Form2-
2.2-2 Examples of System Characteristics and Related Quality Factors 2-7
2.2-3 Relationship of Quality Factors to Life-Cycle Phases 2-9
2.2-4 Relationships Between Software Quality Factors 2-11

225 Typical Factor Tradeof fs 2-12

2.3-1 Software Criteria and Related Quality Factors 2-17
2.3-2 Definitions of Software Criteria 2-20
2.3-3 Software Criteria to Factor Relationships 2-24

2.4-1 Quality Factor Ratings 2-27
2.4-2 Quality Factor Rating Explanation 2-29

2.4-3 Quality Metrics Related to Factors 2-30
2.4-4 Software Metric to Factor Relationship -Subset 2-37

3.3-1 Metric Worksheet Correlation 3-6
4.4-1 Normalization Functions 4-7

-iv-%

44 *~ *4~ *4*'..** .

re 4.-

% % 4. . *

SECTION I

INTRODUCTION

1.1 PURPOSE

There has been an increased awareness in recent years of the critical problems that have
been encountered in the development of large scale software systems. These problems
Include not only the cost and schedule overruns typical of development efforts and the
poor performance of the systems once they are delivered, but also the high cost of

maintaining the systems, the lack of portability, and the high sensitivity to changes in

requirements.

The government and DoD in particular, as customers of many large scale software system

developments, have sponsored many research efforts aimed at attacking these problems.
For example, the efforts related to the development of a standard DoD programming
language, software development techniques, and development tools and aids all provide
partial solutions to the above problems by encouraging a more disciplined approach to the
development of software and therefore a more controlled development process. V

A related research thrust which has been recently funded by DoD is the area of software

quality metrics. The research in this area has resulted in the development and validation _',
of a number of metrics which quantitatively measure various attributes of software which

are related to different aspects of software quality.

The potential of the software metric concepts can be realized by use in software

procurement. Their use enables an acquisition manager to quantitatively specify the a .

desired level of quality for the software product and to periodically measure the achieved
level of quality throughout the software development process. Their effect on a quality
assurance program is to provide a more disciplined, engineering approach to quality
assurance and to provide a mechanism for taking a life cycle viewpoint of software
quality. The benefits derived from their application are realized in life /cle cost
reduction and improved software quality resulting from added visibility for management

control

The purpose of this guidebook is to present a complete set of procedures and guidelines

for introducing and utilizing current software quality metric techniques for a software

6-.4 ..

~ a~* ~ J*. .~.. .*. -. .. -,~.* *-°-- *:. -a4 aoa

% , o- o ,% ° . . ° . o , . .

procurement associated with large scale software system developments. These proced-

ures and guidelines encompass:

1. How to identify and specify software quality requirements;

2. How and when to apply software metrics; and

3. How to interpret the information obtained from the application of the metrics.

1.2 SCOPE

This guidebook incorporates the results of research conducted in support of Rome Air

Development Center (RADC) in the area of quality metrics for distributed systems and

software interoperability and reusability. It is an update of the "Software Quality

Measurement Manual" previously produced under contract number F30602-78-C-0216 and

published as RADC-TR-8O-109, Volume 11 (of two). Software quality metric information

for the quality factors of survivability, expandability, interoperability and reusability has

been added; information for use with distributed systems has been added; editorial

changes have been made; the metric worksheets have been refined, reorganized, and

*placed in an appendix; and metric tables and definitions have been added to the guidebook

*(appendices) for ease of use.

While some aspects of the technology of software quality metrics require further

research, those portions which can currently provide benefit to a software acquisition
manager are emphasized in this guidebook. Guidelines and procedures for using the

software metrics are described. The guidelines and procedures are presented in such a

way as to facilitate their application when using this guidebook for a software develop-
* ment project. All of the procedures are described as manual processes, however, where

automated software tools could be used to compliment or enhance the process, the tools

are identified.

Throughout this document the terms guidebook, handbook and manual are used inter-

changeably.

1.3 QUALITY MEASUREMENT IN PERSPECTIVE

The evolution during the past decade of modern programming practices, structured,

disciplined development techniques and methodologies, and requirements for more struc-

tured, effective documentation has increased the feasibility of effective measurement of

1-2

7 ~ ~ ~ ~ .iV _X -W;4
7~~~~~~~ z t.If-7 .r

software quality. However, before the potential of measurement techniques could be

realized a framework or model of software quality had to be constructed. An established

model, which at one level provides a user or management oriented view of quality, is

described in Section 2 of this guidebook in the perspective of how it can be used to

establish software quality requirements for a specific application.

The actual measurement of software quality, described in Section 3.0, is accomplished by

applying software metrics (or measurements) to the documentation and source code

produced during software development. These measurements are part of the established

- model of software quality, and through that model they can be related to various user-

oriented aspects of software quality.
LA

- The metrics can be classified according to three categories: anoi v-detecting,

predictive, and acceptance.

Anomaly-detecting metrics identify deficiencies in documentat..In or source 10

code. These deficiencies usually are corrected to improve the quality of the

software product. Standards enforcement is a form of anomaly-detecting

metrics.

Predictive metrics are measurements of the soundness of the design and

implementation. These measurements are concerned with form, structure,

density, and complexity type attributes. They provide an indication of the

quality that will be achieved in the end product-based on the nature of the

application and the design and implementation strategies.

Acceptance metrics are measurements that are applied to the end product to

assess the final compliance with requiremrents. Tests are a form of

acceptance-type measurements.

The metrics described and used in this guidebook are either anomaly-detecting or

predictive. They are applied during the software development phases to assist in

identification of quality problems early in the life cycle so that corrective actions can be

taken early when they are more effective dnd economical and to enable a prediction of

9. the quality level expected for the final product.

:.

1-3

. . o

The measurement concepts complement current quality assurance practices; they are not
a replacement for current techniques utilized in normal quality assurance programs. For
example, a major objective of quality assurance is to assure compliance with user/
customer requirements. The software quality metric concepts described in this guidebook

* provide a methodology for the user/customer to specify life-cycle-oriented quality
requirements, usually not considered, and to provide a mechanism for measuring whether

* or not those requirements have been attained. A function usually performed by quality
assurance personnel is a review/audit of software products produced during software
development. The software metrics add formality and quantification to these document
and code reviews. The metric concepts also provide a vehicle for early involvement in the
development process since there are metrics which apply to the requirements and design

* documents produced early in the dt&velopment.

Testing is usually oriented toward evaluating performance (reliability, usability, perfor-
mance, efficiency, etc.). The metrics can assist in evaluating other qualities such as
maintainability, portability, flexibility, etc.

A summary of how the software metric concepts complement quality assurance activities
is provided in Table 1.3-1. This is based on the quality assurance program requirements
identified in MIL-S-52779. These concepts will be further explained and illustrated in the
subsequent sections of this guidebook. k

1.4 GUIDEBOOK ORGANIZATION

The guidebook has been organized as a handbook for use in software acquisition. Section I

provides introductory information and how the guidebook is to be used.

Section 2 defines the software quality model and describes a methodology for using this
-. model to establish software quality requirements or goals for a software development
* project.

Section 3 describes procedures for measuring the quality of the software. These
* .~.procedures cover what to measure, when to measure, and how to measure.

* Section 4 describes procedures for utilizing the information provided by the measurements
to make assessments of the quality of the software and recommends what information to
present to various personnel involved in the development.

1-4

. ". .

-Ij

,,:, Appendix A contains the metric worksheets used for collecting data. .'

-' ' Appendix B contains the metric tables used for calculating metric scores during the
"4 various measurement periods.

• " iAppendix C contains a detailed description of the metric elements.

i.4-

'.1q

.4-

'Ii

-- . ; , ,p, - , - , , . . , . , . _ , . . , , , , . . , , . . < . , , , . , . . . , . -

-- -. r c

Table 1.3-1 How Software Metrics Complement Quality Assurance

F MIL-S-32779

QUALITY ASSURANCE IMPACT OF SOFTWARE QUALITY

PROGRAM REQUIREMENTS METRIC CONCEPTS

Assure Compliance with Adds software quality requirements

Requirements

Identify Software Deficiencies Anomaly-detecting metrics

* Provide Configuration Management No impact

Conduct Test Assists in evaluation of other qualities

Provide Library Controls No impact

Review Computer Program Design Predictive metrics

Assure Software Documentation Metrics assist in evaluation of documenta-

*Requirement Compliance tion as well as code

Conduct Reviews and Audits Procedures for applying metrics (in form of

worksheets) formalizes inspection process

_ Provide Tools/Techniques/Metho- This manual describes methodology of using

dology for Quality Assurance metrics

Provide Subcontractor Control Same as above for all requirements

1-6

",, , -.- --.. ...-.... -.. ,-..,---'

1.5 RECOMMENDED USE OF GUIDEBOOK

The software quality metric concepts can be applied at several levels. In an acquisition
manager/contractor environment, there are three approaches for using the metric

concepts. They are:

- -1. The acquisition manager's staff can establish software quality requirements or

goals and apply metrics to the delivered software products.
2. The development manager's staff can apply metrics to sof tware products

durinmg development and report them to the acquisition manager during

reviews.
3. An independent Quality Assurance or Independent Verification and Validation

(IV&V) contractor can apply metrics to delivered software products and report
them to the acquisition manager.

Within the software development project organization, there are two approaches for using

the metric concepts- They are:

1. The quality assurance personnel can apply the metrics as an independent
assessment of the quality of the software being produced and report them to
the software development manager.

2. The software development personnel can apply the metrics during walk-

* throughs and reviews and report them to the software development manager.

This guidebook is oriented toward those personnel who will be applying the quality metrics

concepts (either quality assurance or development personnel) and recommends three
approaches to both establishing the quality requirements (Section 2) and making a quality
level assessment (Section 4). The three approaches (an index is provided in Table 1.5-1) in
each area are presented in order of increasing formality of the relationship between
quality requirements and metrics, i.e., in order of increasing quantification. The order of

presentation also relates to an increasing requirement for experience with the concepts by
the personnel applying the concepts. Thus, the approaches can be used as a phased

implementation plan of incorporating the metric concepts into the quality assurance
f unctions.

1-7

-Z. -_~.) -2 -- -.11 73~7j . ~ ~ Y -- -. -777-7 -4* I' ' - 7

Table 1.5-1 Index of Three Approaches to Specifying and Assessing Software Quality

APPROACH ASSESSING THE2
(LEVEL OF SPECIFYING APPLYING QUALITY OF
FORMALITY) SOFTWARE QUALITY MEASUREMENTS THE PRODUCT

I Procedures for iden-

tifying important quality PROCEDURES Procedures for

factors FOR the inspector's
(Paragraph 2.2) APPLYING assessment

THE (Paragraph 4.2)
2 Procedures for iden- METRIC

tifying critical software WORKSHEETS Procedures for

attributes (SECTION 3) performing sensi-
(Paragraph 2.3) tivity analysis

(Paragraph 4.3)

; 3 Procedures for establish- Procedures for

ing quantifiable goals use of normaliza-

(Paragraph 2.4) tion function

_ _ _ __-_ _ _ _ _(P a r a g r a p h 4 .4)
s o.

- ,

..
.9,.,

.-..

"I;. .'-.

.9,.-

1- .9

,,9. .A . .-.

.. 2..~ . - 9

This guidebook is recommended to the personnel applying the metric concepts. Additional

information and definitions can be found in:

"Factors in Software Quality", 3 volumes, RADC-TR-77-369, Nov 1977. (MCCA77)

'Software Quality Metrics Enhancements", 2 volumes, RADC-TR40-109, April 1980

'Software Interoperability and Reusability-Final Report".

'!Software Quality Measurement for Distributed Systems - Final Report", Volume I

of this report.
"Distributed Computing Systems: Impact on Software Quality", Volume III of this

•4'

report.

These references are recommended to the personnel applying the metrics for familiariza-

tion with the underlying concepts. They can also be referred to periodically for

definitions and explanations. ";

S..

-1C

% %

.,y~1

-V ,

I ..

- . -, * * * * - U '~ bR r. i~ ~ ~ ~ ~* c* ~. U. ~. W * *'*. *~ -

0'
U,

F4
V

a .

.1~

U.'.Sap

-. 5

US

.5--

S

4
.1

-Y

*. '--~~.:->:.:. .. %~.:C .%~:U *SU% ~ 5

* . - - S - . *U %. ~ ~4 ~.V '
* ~

SECTION 2
IDENIFYING SOFTWARE QAIYREQUIREMENTS

2.1 INTRODUCTION

The primary purpose of using software quality metrics in a software acquisition is to

improve the quaity of the software product by specifying software quality requirements
and by measuring and predicting achieved software quality. The concepts can improve
quality since they are based on achieving a positive influence on the product.

This section addresses the task of identifying software quality requirements and

establishing quantifiable goals. These requirements are in addition to the functional,
performance, cost, and schedule requirements normally specified for software develop-
ment. The fact that the goals established are related to the quality of the end product
should, in itself, provide some positive influence. Past research has shown that goal-

directed system development is effective. (WEIN72)

The vehicle for establishing the requirements is the hierarchical model of software quality

'4 defined in (CAVA78). This model, shown in Figure 2.1-1, has at its highest level a set of
software quality factors which are user/management-oriented terms and represent the
characteristics which comprise software quality. At the next level, for each quality
factor, there is a set of criteria which are the attributes that, if present in the software,
provide the characteristics represented by the quality factors. The criteria, then, are
software-related terms. Table 2.1-1 identifies the thirteen quality factors, the thirty
quality criteria, and their relationships. At the lowest level of the model are the metrics

* which are quantitative measures of the software attributes defined by the criteria. In a

* sense there is a still lower level of the model - the metric elements. Several metric
elements, completed at several points in the software life-cycle, may be combined in

-~ calculations for a single metric. Appendix B, Metric Tables, identifies the metrics and
metric elements.

The procedures for establishing the quality requirements for a particular software system

utilize this model and are described as a three level approach; the levels correspond to the
hierarchical levels of the software quality model. The first level establishes the quality

factors that are impcrtant. The second level identifies the critical software attributes.

2-1

FACTORUSER-ORIENTED VIEW OFPRODUCT OUAUTY

CRITERION CRITERION CRITERION SOFTWARE-ORIENTED
ATTRISUTESWHICH

TI- "INDICATE QUAUTY

MnETRIC M!ETRICD METRIC QUANTITATIVE MEASURES
OF ATTRIBUTES

44%

Figure 2.1-1 Software Quality Framework

2-2

* *'-' J . ?,,,

. - • • - • - " . * "• . ".- .. -5.- *.* . .' **% *_. ." 5 ."•.- - - - .- '. . Y Vqrq"~ S. - ' S. % * %'- , - . . - , .% ,"

.".Table L-1 So...r Quality Fators and Criter *

*.. s * .. :- 5-SOFWAA SOMN NAM SOFTWAx
O• AA?90 lVIIION TAACIO#.

O- AUTONOMY X ..- ,

.1OMOC AAU M V
A L F T A U T
A I a£ I V N I V S It A

I,•C N$ A -...V F A A

C I ItA L V A I I 1 0 0
T I I t A I A I I I A
NUUT II . N T I I L L L a'-"A a I C y y A t I I A I

(SOIA T y V LT . V L
o SCVUI I I V Y V I I

T L T I T
SaF. FSOUIO y I y L Y

y T

,v O- ..C1|NS

9 ACCURACY x

0 ANOMALY MANAGEMENT K ,

0 APPLCATION INDEPENDENCE x

0 AUGMENTAxILITY x x

0- AUTONOMY x

* RCOMNAURLITY x

" COMMUNICATIVENESS x x
" COMPLETENESS x
". CONCISENESS x

o CONSISTENCY x x x
- 0ISTRUTEDNESS x

" DOCUMENT ACCESSIBILTY x

.'V

~0- EFFECIVENESS x

" FUNCTIONAL OVERLAP x
" FUNCTIONAL SCOPE x

" INDEPINDENCE x x x

" MODULARITY K K K K x x K

" OPERABILITY x
" RECONFIGURAaILITY K
--- --- ------- ----------- ----------------------------
" SELF-DESCRIPTIVENESS x K K x x

1 SIMPIUCTY x K x x " - "

" SPECIFICITY x x x
" SYSTEM ACCESSIBILITY K

" SYSTEM CLARITY x

0 TRACEAIITY
0 TRAINING K

0 VIRTUALITY K K K

* VISIBILITY K

2-3 --.

-. %* * ****:~,

•
" • • m . =° o . .

•
"" ."" °". .

o
" % 'o .' , , ..- % °-.° ' ' a . % . * . * .' , °"" " " " "•"

The third level identifies the metrics that will be applied and establishes quantitative

c ratings for the quality factors.

Once the quality requirements have been determined by following the procedures

described in the subsequent paragraphs, they are to be transmitted to the development
team. In a formal acquisition manager/contractor environment, the Request for Proposal
(RFP) is the medium for identifying these requirements. The results of following the

procedures should be incorporated in the RFP. If the development is being done
* internally, the quality requirements should be documented in the same form as the other

system requirements. A briefing emphasizing the intent of the inclusion of the quality
requirements can also be conducted.

2.2 IDENTIFYING IMPORTANT QUALITY FACTORS

2.2.1 Procedures

* The basic tool utilized in identifying the important quality factors is the Software Quality
Requirements Form shown in Table 2.2-1. The formal definitions of each of the thirteen
factors are provided on that form.

A briefing, using the tables and figures contained in this paragraph, should be conducted -

* for the decision makers in order to solicit their responses to the survey. The decision
V makers may include the acquisition manager, the user/customer, the development

manager, and the quality assurance manager. To complete the survey the following five
procedures are recommended.

la. Consider Basic Characteristics of the Application

The software quality requirements for each system are unique and are
influenced by system or application-dependent characteristics. There are
basic characteristics which affect the quality requirements and each software
System must be evaluated for its basic characteristics. Table 2.2-2 provides a
list of some of these basic characteristics. For example, if the system is being

developed in an environment in which there is a high rate of technical
breakthroughs in hardware design, portability should take on an added signifi-

* cance. If the expected life cycle of the system is long, maintainability and

2-4

.

Table 2.2-1 Software Qualitv Requiremen's Form

The 13 quality factors listed below represent aspo-cts of software quality which are
currently thought to be important. Indicate whether you consider each factor to be
Very Important (Vro, Important (1), Somewhat Important (Sfl, or Not Important (NI) as
desIgn goals in the system you are currently working on or planning.

RESPONSE FACTORS DEFINITION

CORRECTNESS Extent to which the software satisfies
its specifications and fulfills the user's
mission objectives.

RELIABILITY Probability that the software will per-
form its logical operations n the speci-
fled environment without failure.

EFFICIENCY Degree of. utilization of resources (pro-
cessing time, storage, communication
time) in performing functions.

INTEGRITY Extent to which unauthorized access to
the software or data can be controlled.

USABILITY Effort for tra.nin and software opera-
tion - famUlarization, input preparation,
execution, output interpretation.

SURVIVABILITY Probability that the software will conti- -
nue to perform or support critical func-
tions when a portion of the system is
Inoperable.

MAINTAINABILITY Average effort to locate and fix a soft-
ware failure.

VERIFIABILITY Effort to verify the specified software
operation and performance.

FLEXIBILITY Effort to extend the software missions,
functions, or data to satisfy other
requirements.

PORTABILITY Effort to convert the software for use in
another operating environment (hard-
ware configuration, software system
environment).

REUSABILITY Effort to convert a software component
for use in another application.

INTEROPERABILITY Effort to couple the software of one
system to the software of another sys-
tem.

EXPANDABILITY Effort to increase software capability or
performance by enhancing current func-
tions or adding new functions/data.

itle: lName: Signature:

2-5

% .

Table 2.2-2 Example of System Characteristics and Related Quality Factors

SYSTEM
CHARACTERISTIC QUALITY FACTOR

If human lives are affected Reliability
Correctness
Verif iability
Survivability

Long life cycle Maintainability
Expandability

Experimental system Flexibility
high rate of change

High technology in hardware design Portability

Many System changes over life cycle Reusability
* Expandability

Real time application Ef ficiency
Reliability
Correctness

On-board computer application Ef ficiency
Reliability I

Correctness
Survivability

Processes classified information Integrity

Interrelated systems Interoperability

2-6 .

IL~

S7 -

* expandability become cost-critical considerations. If the application is an

experimental system where the software specifications will have a high rate of
change, flexibility and expandability in the software product are highly
desirable. If the functions of the system are expected to be required for a

long time, while the system itself may change considerably, reusability and

expandability are of prime importance in those modules which implement the
major functions of the system. With the advent of more computer networks

and communication capabilities, morL. systems are being required to interface
with other systems and the concept of interoperability is extremely important.

With distributed computing systems, more attention is given to providing some

* essential computational services even when some subsystems are inoperable,
and the concept of survivability is extremely important. For systems with

long life-cycles (e.g., 15-20 years for a major weapon system) some provisions
must be made for incorporating new hardware (add-on memory or peripherals)

or new software (upgraded operating system), and the concept of expandability
becomes crucial. These and other system characteristics should be considered
when identifying the important quality factors.

If system level quality requirements have already been established, refer to
Section 3.2 of Volume I of this report for aids in allocating the system quality

* requirements to the spftware level and in identifying important software

quality factors.

lb. Consider Life Cycle Implications
The thirteen quality factors identified on the Software Quality Requirements

a.' Form (Table 2.2-1) can be grouped according to three life cycle activities
associated with a delivered software product. These three activities are

product operation, product revision, and product transition. The relationship

of the quality factors to these activities is shown in Table 2.2-3 under the post
development period. This table also illustrates where quality ratings can be

predicted through measurement (L~)and where the impact is felt if poor
quality is recognized WX.

2-7

h 2 S .2 .2 2 2

x x C

- 44

C CN
cc- - - -- - - - -- - - -

ED cu
3 L (

v i wx xc I (I 00I c .

I-2-8

edi hge

The size of this impact determines the cost savings that carn be expecteifahhr

quality system is achieved through the application of the metrics. This cost savings is

somewhat offset by the cost to apply the metrics; and the cost to develop the higher

quality. software product as illustrated in Figure 2.2-1. The cost to apply the metrics is

* difficult to estimate for the first project in which they are applied. This is due to the

training time for personnel applying metrics. Experience shows that a learning curve

applies - that subsequent applications of metrics have a lower cost and greater cost

saving opportunities.

LIFE
CYCLE

COST TO DEVELOP SAVINGS AS
HIGH QUALITY SOFT WARE A RESULT OF
PLUS HIGHER
COST To QUALITY
MEASURE QUALITY PRODUCT

Figure 2.2-1 Benefit Tradeoff: Quality Costs vs Cost Savings

This cost to implement versus life-cycle cost reduction relationship exists for each

quality factor. The benefit, cost-to-provide versus cost-saved ratio, for each factor is

rated as high, medium, or low in the right hand column of Table 2.2-3. This relationship

and the life-cycle implications of the quality factors should be considered when selecting

the important factors for a specific system.

I c. Performance Tradeof fs Among the Quality Factors
As a result of steps la and lb, a tentative list of quality factors should be

produced. The next step is to consider the interrelationships among the

factors selected. Tables 2.2-4 and 2.2-5 can be used as a guide for

determining the relationships between the quality factors. Some factors are

synergistic while other conflict. The impact of conflicting factors is that a

lower quality level can be expected for each factor if both are required than

can be expected if only one or the other is required. The synergistic (positive

tradeoffs) and conflicts (negative tradeoffs) may reflect a more complex
interrelationship of factors. For example, there may be a group of three

factors which can all be enhanced together by a design decision. An effort

should be made to identify such multiple tradeoffs for the particular software

product.

2-9

Table 2.2-4 Relationships getwueen Software Quality Factors

LEGEND:
IF A HIGH DEGREE OF QUALITY
IS PRESENT FOR ONE FACTOR,
THE DEGREE OF QUALITY EXPECTED

.*1 FOR THE OTHER FACTOR IS:

aHIGH
-Low

SOFTWARE BLANK aNONE OR DEPENDENT UPON
QUAUTYAPLCTO
FACTORS C

0

CORRECTNESSt TR

SO-

SURIVAIUE L~ E m

Q XIITY
Y TI B

QEUALITY T A F R I

ENEOIRULT 1 _ C N~ U V T

ELIAABITY A L P T AA'

EFIINC &YL.

T I 0
I X R R

IN.*PA
A 'T 1

USBLTY.:6 61 T I Ia.

SUViBiT z 11

MANANBLT '2SA.1 & 46 YT

I L A

VERFIAILIY 4h 4 6 A6 9:h 49 62-110

FLXBLT 4 &4 &4,4

POTBLIYA 4:lY

REU AB.r 4 6. & 1-. . dn. 4,126. . ':'*'. .*4.*** **.I.L

IN*ROPRABLIT Y-* T **~

"%.

..-

67;K_7

Table 2.2-5 Typical Factor Tradeoffs

EFFCIENCY THE AOOITIONAL CODE REQUIRED TO PROVIDE ACCURACY AND
TO PERFORM ANOMALY MANAGEMENT USUALLY INCREASES RUN
TIME AND REQUIRS ADDITIONAL STORAGE.

REUAINIY __ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _
S Vs PLiXIIIUTY THE GENERALITY REQUIRED FOR FLEXIBLE, REUSAIL.. AND

REUSAIM EXPANDABLE SOFTWARE USUALLY INCREASES THE DIFFICULTY OF
EUPANODAIU PROVIDING ACCURACY AND PERFORMING ANOMALY

INTIEOPIRAINTY MANAGEMENT FOR SPECJPIC CASES.

THE ADDITIONAL CODE AND PROCESSING REQUIRED TO CONTROLINTEGRITY ACCESS TO CODE ORt DATA USUALLY LENGT,4ENS RUN TIME AND

REQUIRES ADDIONAL.STORAGE.

THE ADDITIONAL CODE AND PROCESSING REQUIRED TO EASE AN
USA.IUTY OPERATORS TASK OR TO PROVIDE MORE USABLE OUTPUT

USUALLY INCREASE RUNTIME AND REQUIRE ADDITIONAL
STORAGE.

SURVIVABIUITY THE LDOITIONAL CODE AND PROCESSING REQUIRED FOR
MODULAR. RECONFIGURA[LE. ANOMALY TOLERANT SOFTWARE
RESULTS IN LESS EFFICIENT OPERATION.

5-.* USING MOOULAR. V BU. SELF.DESCRIFTIVE CODE TO INCREASE
MAINTAINAIIIY m TNIIuTY AND VERIFIABILITY USUALLY INCREASES

EFICIENCY VERIFIABILUTY OVERHEAD AND RESULTS IN LESS EFFICIENT OPERATION. CODE

WHICH IS OPTIMIZED FOR EFFICIENCY POSES PROBLEMS TO THE
TESTER A MAINTAINER.

FIL.ITY THE GENERALITY RfQUIRO FOR FLEXIBLE AND REUSABLE

RIUSABUR.Y SOiWARE INCREASES OVERHEA6 AND DECREASES EFFICIENCY.

THE USE OF CODE OPTIMIZED FOR EFFICENCY USUALLY
PORTABILITY DECREASES PORTABILITY.

INTEROPERAIUlTY THE OVERHEAD FOR CONVERSION FROM STANORO DATA
REPRESENTATIONS AND FOR THE USE OF STANDARD INTERFACE

. ROUTINES DECREASES OPERATING EFmCIENCY.

FXPANOAAIITY THE USE OF MOOULAR. GENERAL SOFTWARE USUALLY DECREASES
OPERATING EFFICIENCY.

THE OISTMMUTEODNESS REQUIRED FOR SURVIVABLE SOFTWARE
SURVIVABILITY INREASES THE RISK OF UNAUTHORIZED ACCESS.

F.EXIBIUTY THE GENERALITY REQUIRED FOR FLEXIBLE AND REUSABLE
REUSABIUTY SOFTWARE INCREASES THE RISK OF UNAUTHORIZED ACCESS.

INTE[GRITY
:4' NTERIT COUPLED SYSTEM HAVE MORE AVENUES OP ACCESS, DIFFERENT

INTEROPERABIIUTY USERS. AND COMMON DATA REPRESENTATIONS; THE Y OFTEN

SHARE DATA AND CODE. THESE INCREASE THE POTENTIAL FOR . ..

ACCIDENTAL OR DEUBERATE ACCESS OF SENSITIVE DATA.

THE GENERALITY REQUIRED FOR EXPANDABLE SOFTWARE
EXPANDAILUTY INCREASES THE RISK OF UNAUTHORIZED ACCESS.

• .5.-'
SURVIVABIUTY FLEXISIUTY THE9 RICONFIGURABIUTY REQUIRED FOR SURVIVABLE SOFTWARE . .

SOREUSABILUTY REDUCES ITS FLEXIBIUITY. PORTABILITY. AND REUSABIITY.

INTEROPIRABIUTY MAINTAINABIUTY THE ADDITIONAL COMPLEXITY INTRODUCED BY
OVS VERIFIABIUTY COMMUNICATION. FUNCTIONAL NTERFACING. AND DATA

FLEXIBILITY COMMONALITY BETWEEN SYSTEMS INCREASES THE COMPLEXITY Nr'
OF CHANGING. VERIFYING, AND MAINTAINING THE SOFTWARE

2-11

• ° ,%

,. S" '4 ." * " ." 5........"...". ' '''*''""""• "' . '." - """ " " ", "" ""."•"

Id. Identify Most Important Quality Factors
Based on la through 1c, a list of quality factors considered to be important for

the particular system can be compiled. The list should be organized in order
of importance. A single decision maker can be assigned to choose the factors
or the choice can be made by averaging several survey responses. The
definitions Of the factors chosen should be included with this list.

le. Provide Explanation for Choice
The rationale for the decisions made during Steps l a through I c should be

documented. If a factor is not considered important for the system, a
rationale may also be provided. For example, maintainability may not be
emphasized because verifiability (given top priority) will ensure a thoroughly
tested (and therefore highly maintainable) product.

2.2.2 An Example of Factors Specification

To illustrate the application of the above steps, consider a spare parts inventory control
system. The inventory control system maintains inventory status and facilitates requisi-
tioning, reordering, and issuing of spare parts to Air Force units in support of various
missions. The planned fife of the system is ten years.

Each step described previously will be performed with respect to the spare parts inventory
control system.

la. Consider Basic Characteristics of the Application
Utilizing Table 2.2-2 and considering the unique characteristics of the spare
parts inventory control system resulted in the following:

Characteristic Related Quality Factor

Critical Support for Reliability
a Flying Unit Correctness

Verif iability

Survivability

2-12

..-.-.

...........

. ,. . °

Characteristic Related Quality Factor

Long Life Cycle Maintainability
5- With Stable Hardware

And Software Requirements

Utilized By Air Force Main- Usability

tenance Personnel

Interfaces with other Air Interoperability
Force Inventory Systems (e.g.

Supplies)

lb. Consider Life Cycle Implications
For the five quality factors identified in la, determine the life cycle cost

benefits according to Table 2.2-3.

QUALITY
FACTORS COST BENEFIT RATIO

Reliability High
' Correctness High

Verifiability High

Survivability Low
Maintainability High

5' Usability Medium

Interoperability Medium

I c. Perform Trade Off s Amonx Quality Factors
Using Table 2.2-4, there are no conflicts which nieed to be considered.

Id. Identify Most Important Quality Factors
Using Table 2.2-1 and the guidance provided by steps la through Ic, the
following factors are identified in order of importance; provide the definitions.

CORRECTNESS -Extent to which the software satisfies its specifica-

tions and fulfills the user's mission objectives.

2-13

- : ..:~~~~~~ ~~~..............:. --.-,:,... :..:::- :... . . . :: :.':.. ,- ..

RELIABILITY -Probability that the software will perform its logical

operations in the specified environment without fail-
ure.

USABILITY -Effort for training and software operation -familiari-

zation, input preparation, execution, output interpre-
A tation.

VERIFIABILITY -Effort to verify the specified software operation and

performance.

SURVIVABILITY -Probability that the software will continue to perform

or support critical functions when a portion of the
system is inoperable. 1

MAINTAINABILITY -Average effort to locate and fix a software failure.

INTEROPERABILITY -Effort to couple the software of one system to the
4 software of another system.

le. Provide Explanation for-Choice

Document the rationales for the decisions made in the above step.

CORRECTNESS -System performs critical spare, parts provision

function.

RELIABILITY -System performs critical spare parts provision
functions in field environment.

~ ~VERIFIABILITY -System performs critical spare parts provision
functions.

SURVIVABILITY -System performs critical spare parts provision
.. function in field environment and will interface with

other systems.

2-14

,. ~USABILITY -System will be used by military personnel with mini-

mum computer training.

MAINTAINABILITY -System life cycle is projected to be 10 years and will

operate in the field and be maintained by military

-.. personnel.

INTEROPERABILITY -System will interface with other inventory systems.

2.3 IDENTIFYING CRITICAL SOFTWARE ATTRIBUTES

2.3.1 Procedures

-!! The second level of identifying the quality requirements involves proceeding from the

user-oriented quality factors to the software-oriented criteria. Sets of criteria, which are
attributes of the software, are related to the various factors by definition. Their
identification is automatic and represents a more detailed specification of the quality

requirements. Ideitification of a quality factor does not automatically mean that all
-" criteria within that factor are equally important. Tradeoffs and synergisms may exist

between criteria within the same factor. A subset of the criteria within a factor may be

identified.

"-: 2a. Identify Critical Software Attributes Required
Table 2.3-1 is used to identify the software attributes (criteria) associated

with the chosen software quality factors.

2"15

•...

%"

: .C ,. ' . -. . % % " _ . . . ' , . , , - . . , - - " - - - ° ' . " . . ' - . ' , . " . " . " - " . " - " " " " . . - _ - . . . - . - - - . - . - . - % °

Table 2.3-1 Software Criteria and Related Quality Factors

QUALITY
FACTOR SOFTWARE CRITERIA

CORRECTNESS COMPLETENESS

CONSISTENCY

SIMPLICITY

SPECIFICITY

TRACEABILITY

EFFICIENCY EFFECTIVENESS

FLEXIBILITY GENERALITY

MODULARITY

SELF-DESCRIPTIVENESS

SIMPLICITY

INTEGRITY SYSTEM ACCESSIBILITY

VIRTUALITY

INTEROPERABILITY AUGMENTABILITY

COMMOINALITY

COMMUNICATIVENESS

FUNCTIONAL OVERLAP

INDEPENDENCE

MODULARITY

SYSTEM COMPATIBILITY

MAINTAINABILITY CONCISENESS

CONSISTENCY

MODULARITY

SELF-DESCRIPTIVENESS

SIMPLICITY

VISIBILITY

2-1 6

.- % - . -L. '- " ."--.
"

:- ">'' -". " ." '. " . " * . " " -1. -•

~~~~~..- .,., ....................................;- ,,, -. ,- -. ,. ., .. _ . ........... ...... ........ . ...... . . . , . . , . . . . .



Table 2.3-1 (continued)

QUIALITY
* ACTOR SOFTWARE CRITERIA

EXPANDABILITY AUGMENTABILITY

GENERALITY

MODULARITY

SIMPLICITY

SPECIFICITY

VIRTUALITY

PORTABILITY INDEPENDENCE

MODULARITY

SELF -DESCRIPTIVENESS

RELIABILITY ACCURACY

ANOMALY MANAGEMENT

CONSISTENCY

SIMPLICITY

REUSABILITY APPLICATION INDEPENDENCE

DOCUMENT ACCESSIBILITY

FUNCTIONAL SCOPE

GENERALITY
INDEPENDENCE

MODULARITY

SELF DESCRIPTIVENESS

SIMPLICITY

SYSTEM CLARITY

VERIFIABILITY MODULARITY

SELF -DESCRIPTIVENESS

SIMPLICITY

SPECIFICITY___________IVISIBILITY

2-17



~0 Table 2.3-1 (continued)

USABILITY COMMUNICATIVENESS

VIRTUALITY

VISIBILITY

SURVIVABILITY ANOMALY MANAGEMENT

AUTONOMY

DISTRIBUTEDNESS

MODULARITY

RECONFIGURABILITY

2-18

- . - .7



-__

2b. Provide Definitions

Table 2.3-2 should be used to provide the definitions of criteria as part of the

specification.

Table 2.3-2 Definitions of Software Criteria

" -"SOFTWARE CRITERION DEFINITION 44

ACCURACY Those attributes of the software which provide
the required precision in calculations and outputs.

ANOMALY MANAGEMENT Those attributes of the software which provide
for continuity of operations under, and recovery
from nonnominal conditions.

APPLICATION INDEPENDENCE Attributes of the software which determine its .4

dependency on the software application (database
system, data structure, system libraries routines,

microcode, computer architecture and algorithms)

AUGMENTABILITY Those attributes of the software which provide
___ ___ ___ for expansion of capability for functions and data.

AUTONOMY Those attributes of the software which determine
its nondependency on interfaces and functions.

COMMONALITY Those attributes of the software which provide
for the use of interface standard for protocols,
routines, and data representations.

COMMUNICATIVENESS Those attributes of the software which provide
useful inputs and outputs which can be assimila-
ted.

COMPLETENESS Those attributes of the software which provide
full implementation of the functions required.

CONCISENESS Those attributes of the software which provide
for implementation of a function with a minimum
amount of code.

CONSISTENCY Those attributes of the software which provide
for uniform design and implementation techniques
and notation.

DISTRIBUTEDNESS Those attributes of the software which determine
the degree to which software functions are geo-
graphically or logically separated within the sys-
tern.

DOCUMENT ACCESSIBILITY Attributes of the software which provide easy
access to and selective use of system components.

.2-19

*' - . . S * S°° " * ". °+ o ' . i m " % . °, "+ . . . S S° . S . -'

',,v. . . . ...."" '" : ."- .-" ",' , -. "- ,-. . . " .S - -- ':- " - - -" "" " '" "" "'



Table 2.3-2 (continued)

SOFTWARE CRITERION DEFINITION

EFFECTIVENESS Those attributes of the software which provide -
for minimum utilization of resources (processing
time, storage, operator time) in performing func-
tions.

FUNCTIONAL OVERLAP A comparison between two systems to determine
the number of functions common to both systems.

FUNCTIONAL SCOPE Those attributes of the software which provide
the scope of functions required to be performed
i.e. specificity, commonality and completeness.

GENERALITY Those attributes of the software which provide
breadth to the functions performed with respect

,.._ __ _ _ _ to the application.

INDEPENDENCE Those attributes of the software which determine
its non-dependency on the software environment
(computing system, operating system, utilities,
input/output routines, libraries).

MODULARITY Those attributes of the software which provide a
structure of highly cohesive modules with opti-
mum coupling.

OPERABILITY Those attributes of the software which determine
operations and procedures concerned with the
operation of the software.

RECONFIGURABILITY Those attributes of the software which provide
for continuity of system operation when one or
more processors, storage units, or communication
links fail.

SELF-DESCRIPTIVENESS Those attributes of the software which provide
explanation of the implementation of a function.

SIMPLICITY Those attributes of the software which provide
for the definition and implementation of functions
in the most non-complex and understandable man-
ner.

SPECIFICITY Those attributes of the software which provide -

for singularity in the definition and implementa-
tion of functions.

SYSTEM ACCESSIBILITY Those attributes of the software which provide
for control and audit of access of software and
data.

2-20

-, .- . *.; v,,'-'- :-:-.,,\,.... . . .-- . . .- - .. . - -'.-',- '-', . _ .. ' .... '.. .- '.... ".. -. .



~~w-~ ~ -. -- **~~:.~*. .- --

Table 2.3-2 (continued)

SOFTWARE CRITERION DEFINITION

SYSTEM CLARITY Those attributes of the software which provide
clear description of program structure in the most
non-complex, easily understandable and modi-
fiable manner.

SYSTEM COMPATIBILITY A measure of the hardware, software and com-
munication compatibility of two systems.

TRACEABILITY Those attributes of the software which provide a
thread of origin from the implementation to the

* 4 requirements with respect to the specific devel-
opment envelope and operational environment.

TRAINING Those attributes of the software which provide
transition from current operation or provide

__________________________ initial familiarization.

VIRTUALITY Those attributes of the software which present a
system that does not require user knowledge of
the physical, logical, or topological characteris-
tics (e.g., number of processors/disks, storage
locations).

VISIBILITY Those attributes of the software which provide
status monitoring of the development and opera-

* - tion (e.g., instrumentation).

2-21



* . - .. .

2.3.2 Example of Identifying Software Criteria

Continuing with the example of paragraph 2.2.2, the software criteria for the identified

quality factors would be chosen.

2a. Identify Critical Software Attributes

.- Using the relationships provided in Table 2.3-1, the software criteria shown in

Table 2.3-3 would be identified. Evaluation of the definitions of the criteria in

the context of the software product and its quality goals, may allow a number
of the resulting criteria to be eliminated.

;-..2.

.5.° -

.. 4..

. ".5

" , 2-22 ""



e.- Table 2.3-3 Software Criteria to Factor Relationships

RELATED FACTOR

SOFTWARE

CRITERIA CO RL SV MA VE US IP

TRACEABILITY X

CONSISTENCY X X X

COMPLETENESS X
ANOMALY MANAGE- X X

MENT

ACCURACY X

SIMPLICITY X X X
CONCISENESS X
MODULARITY X X X X
SELF-DESCRIPTIVENESS X X
OPERABILITY x "S

TRAINING X

COMMUNICATIVENESS X
COMMONALITY X
FUNCTIONAL OVERLAP X
INDEPENDENCE X

SYSTEM COMPATIBILIT X
VISIBILITY X X X
AUGMENTABILITY X

MODULARITY X
AUTONOMY X

DISTRIBUTEDNESS X

RECONFIGURABILITY X

SPECIFICITY X

CO Correctness, RL Reliability, SV Survivability

MA Maintainability, VE = Verifiability,
US Usability, IP Interoperability

2-23

* .. '..

,'-.. . . . .-- S "1 : 1 .



2b. Provide Definitions
The definitions for each of these software criteria, as shown in Table 2.3-2
would also be provided as part of the specification.

2.4 ESTABLISHING QUANTIFIABLE GOALS

2.4.1 Procedures

The third and last level, which is the most detailed and quantified, requires precise
statements of the level of quality that will be acceptable for the software product.

Currently, the underlying mathematical relationships which allow measurement at this
level of precision do not exist for all of the quality factors. The mechanism for making
the precise statement for any quality factor is a rating or figure-of-merit of the factor.
The underlying basis for the ratings of all factors except reliability and survivability is the

- -' effort or cost required to perform a function such as to correct or modify the design or
program. For example, rating for maintainability might be that the average time to fix a

problem should be five man-days or that 90% of the problem fixes should take less than

six man-days. This rating would be specified as a quality requirement. To comply with
this specification, the software would have to exhibit characteristics which, when present,
give an indication that the software will perform to this rating. These characteristics are

measured by metrics which are inserted into a mathematical relationship to obtain the

a--, predicted rating. Note that the reliability ratings are provided in terms familiar to
*traditional hardware reliability. Just as in hardware reliability there are significant

differences between ratings of .9 and .99.

In order to choose ratings such as the two mentioned above, data must be available which .

allows the decision maker to know what is a "good rating" or perhaps what is the industry

average. Currently there is generally a lack of good historical data to establish these
expected levels of operations and maintenance performance for software. There are

significant efforts underway to compile historical data and derive the associated
performance statistics (DUVA76). Individual software development organizations and
System Program Offices should attempt to compile historical data for their particular

* environment. Any environment-unique data available should be used as a check against
. the data provided as guidelines in this manual. The data utilized in this section is based S

on experiences applying the metrics to several large command and control software

systems and other experiences reported in the literature.

2-24



a- - - - -a Y

3a. Specify Ratinit for Each Quality Factor
After identification of the critical quality factors, specific performance levels

or ratings required for each factor should be specified. Tables 2.4-1 and 2.4-2

should be used as a guideline for identifying the ratings for the particular
factors. Note that mathematical relationships have not been established for

a" some of the factors. In those cases, it is advisable not to levy requirements

for meeting a specific quality rating but instead specify the relative impor-
tance (priority) of the quality factor as a development goal.

3b. Identify Specific Metrics to be Apied
The next step or an alternative to 3a is to identify the specific metrics which

a.- will be applied to the various software products produced during the develop-

ment. The Metric Worksheets described in Appendix A can be used for this
* purpose or Table 2.4-3 can be used to identify the metrics and reference can

be made to Appendix C where definitions of the metrics are provided.
Detailed examination may allow a subset of the metrics within a criteria to be
isolated.

3c. Sp~ecification of Metric Threshold Values
NIn lieu of specifying quality ratings or in addition to the ratings, specific

minimum values for particular metrics may be specified. This technique is
equivalent to establishing a standard which is to be adhered to. Measurements

less than the value established are to be reported. Typical values can be
derived by applying the metrics to software products developed in a particular

environment or by looking at the scores reported in (MCCA77), (MCCA8O) or
Volume I of this report. When establishing these threshold values based on

past project data, projects which have been considered successful, iLe., have
demonstrated good characteristics during their life cycle should be chosen.
For example, a system which has been relatively cost-effective to maintain

over its operational history should be chosen and the metrics related to
maintainability applied to establish threshoca values. Incentives may also be

* . offered if a particular metric exceeds a maximum threshold value. -.

2-25

...........



:01,*

Tabl. 2.4-1 Quality Factor Ratings

QUALITY FACTOR RATING EXPLANATION RATING GUIDELINES- -

RELIABILITY* Rating s in terms of the number RATING .9 .9 .99 .9"
of errors that occur after the-- -

start of formal testing. ERRORS 10 2 1 1

'100 L

Rating aI-Nme of Errorl
Nubrof Lines of

source code exclud-
ing comments

MAINTAINA- Rating is interms of the average RATING .3 .5 .7* .9
BILITY' amount of effort required to lo-- - - -

*cate and fix an errorIn an opera- AVERAGE 7 3 3
tional program. EFFORT

(MAN
%Rating 1-.1 (Average number DAYS)

of man days
- per fix)

i.PORTABILITY* Rating is in terms of the effort RATING .23 .50' .73 .9
required to convert a program to - - - -

-.-' ..

rn in another environment with % OF 73 30 23 10
respect to the effort required to ORIGINAL

*originally implement the program. EFFORT

Rating x I1-Effort to Transport
Effort to Implement

FLEXIBILITY' Rating is in terms of the average RATING .3 .3"* .7 .9
effort required to extend a pro-- - - -

gram to include other require- AVERAGE 14 10 6 2
ments. EFFORT

(MAN
Rating = 1-.0(Average number DAYS)

of man days to change)

REUSABILITY* Rating is in terms of the effort RATING .2 .4' .75 .9
required to convert a program to -

a different application with re- % OF so 60 25 10
. spect to the effort required to EFFORT

build a new program. TO BUILD

Rating: I-Effort to Convert
Effort to ruild

.1 2-26

.'I FLXBLT* Rtn s ntrso h vrgeRTN 3 .* 7 .

effort required -. *o.extend.a pro-



'.o.

Table 2.4-1 (Continued)

QUALITY FACTOR RATING EXPLANATION RATING GUIDELINES

INTEROPERA-
BILITY- Rating is in terms of the effort RATING .2 .5 .75 .9

required to couple the system to
another system. % OF so 30 25 10

*. EFFORT
Rating I-Effort to Modif TO BUILD

Effort to Build

EXPANDABILITY* Rating is in terms of the effort RATING .4 .5 .6 .7
to increase software capability, - -

performance and original devel- % OF 60 45 30 L0 
opment effort. EFFORT

TO DEVEL9

NOTES
* Data collected to date provides some basis upon which to allow quantitative

ratings for these quality factors. These ratings should be modified based on
.data collected within a specific development environment. Data has not been

collected to support ratings of the other quality factors.

** Indicates rating which might be considered current industry average.

--

34.%

, ,. s. '

43

l i........

t, .. ..

'-'d

1 .o. .

.. . . .. .*. . . . .... .. . .. .. . . . .. . . . ., . .. "..'..... '..."..." .,,'),

": :: : , : - : : :' .: : :' . .:: " = == = == = = = == = == == == = == == = == .a :. .. :: : .: : : - .. .,. ....- -. .. .. ,' . . ... , .. .. ..., .. ., , , • ,, ,



Table 2.4-2 Quality Factor Rating Explanation

QUALITY RATING EXPLANATION
FACTOR (Guidelines Not Established)

CORRECTNESS The function which the software is to perform is incorrect. The

rating is in terms of effort required to implement the correct

f unction.

EFFICIENCY The sof tware does not meet performance (speed, storage) require- -

ments. The rating is in terms of effort required to modify

software to meet performance requirements.

INTEGRITY The software does not provide required security. The rating is in

terms of effort required to implement p.roper levels of security.

*USABILITY There is a problem related to operation of the software, the user

interface, or the input/output. The rating is in terrr. * of effort

required to improve human factors to acceptable level.

VERIFIABILITY The rating i* in terms of effort required to test changes or fixes.

SURVIVABILITY The rating is in terms of the number of survivability related errors

that occur after the start of formal testing.

'2-2



Table 2.4-3 Quality Metrics Related to Factors

QUALITY

FACTOR METRICS ACRONYM*

CORRECTNESS COMPLETENESS CHECKLIST CP.I

PROCEDURE CONSISTENCY MEASURE CS..

DATA CONSISTENCY MEASURE CS.2

DESIGN STRUCTURE MEASURE Sl.l
STRUCTURED LANGUAGE OR PREPROCESSOR 5.2

DATA AND CONTROL FLOW COMPLEXITY

MEASURE 5L3

CODING SIMPLICITY MEASURE SI.4

SCOPE OF FUNCTION MEASURE SP.l

v. CROSS REFERENCE TR.1

RELIABILITY ERROR TOLERANCE/CONTROL CHECKLISTS AM..

IMPROPER INPUT DATA CHECKLIST AM.2

COMPUTATIONAL FAILURES CHECKLIST AM.3

HARDWARE FAULTS CHECKLIST AM.4
DEVICE ERROR CHECKLIST AM.5

COMMUNICATION ERRORS CHECKLIST AM.6
NODE/COMMUNICATIONS FAILURES AM.7
ACCURACY CHECKLIST AY. I

PROCEDURE CONSISTENCY MEASURE CS.I

DATA CONSISTENCY MEASURE CS.2

, DESIGN STRUCTURE MEASURE S1.1
STRUCTURED LANGUAGE OR PREPROCESSOR 51.2

DATA AND CONTROL FLOW COMPLEXITY

MEASURE SI.3

CODING SIMPLICITY MEASURE SI.4

EFFICIENCY PERFORMANCE REQUIREMENTS EF. I
ITERATIVE PROCESSING EFFICIENCY MEASURE EF.2

DATA USAGE EFFICIENCY MEASURE EF.3
STORAGE EFFICIENCY MEASURE EF.4

*Acronym references relate to definitions in Appendix C

2-29 ~1

.e.

. . . . . . . . . . . . . . . . . .

;.. "..% -*- . . . . .



Table 2.4-3 (Continued)

QUALITY

FACTOR METRICS ACRONYM*

INTEGRITY ACCESS CONTROL CHECKLIST SA.1

ACCESS AUDIT CHECKLIST SA.2

SYSTEM/DATA INDEPENDENCE CHECKLIST VR.1

USABILITY USER INPUT INTERFACE MEASURE CM.I
-.- USER OUTPUT INTERFACE MEASURE CM.2

OPERABILITY CHECKLIST OP.1
TRAINING CHECKLIST TN.I

SYSTEM/DATA INDEPENDENCE CHECKLIST VR.1

MODULE TESTING MEASURE VS.I

INTEGRATION TESTING MEASURE VS.2
SYSTEM TESTING MEASURE VS.3

SURVIVABILITY ERROR TOLERANCE/CONTROL CHECKLIST AM.I

IMPROPER INPUT DATA CHECKLIST AM.2

COMPUTATIONAL FAILURES CHECKLIST AM.3
HARDWARE FAULTS CHECKLIST AM.4

DEVICE ERRORS CHECKLIST AM.5

COMMUNICATION ERRORS CHECKLIST AM.6
NODE/COMMUNICATIONS FAILURES CHECKLIST AM.7'.M.7

INTERFACE COMPLEXITY MEASURE AU.1
SELF-SUFFICIENCY CHECKLIST AU.2
DESIGN STRUCTURE CHECKLIST DI.1

MODULAR IMPLEMENTATION MEASURE MO.2

MODULAR DESIGN MEASURE MO.3

RESTRUCTURE CHECKLIST RE.1

MAINTAINABILITY HALSTEAD'S MEASURE CO.l

PROCEDURE CONSISTENCY MEASURE CS.l

*Acronym references relate to definitions in Appendix C

2-30

......... .-. . -.......... ., ,.. ,. ,*.,. .-. ,,,... . ...- .. ,,.-.. .... . .. .... .. . , . .- . ., .. .. L



Table 2.4-3 (Continued)

QUALITY

FACTOR METRICS ACRONYM*

MAINTAINABILITY DATA CONSISTENCY MEASURE CS.2

(continued) MODULAR IMPLEMENTATION MEASURE MO.2

MODULAR DESIGN MEASURE A4O.3

QUANTITY OF COMMENTS SD. 7

EFFECTIVENESS OF COMMENTS MEASURE SD.2

DESCRIPTIVENESS OF LANGUAGE MEASURE SD.3

DESIGN STRUCTURE MEASURE SI-
STRUCTURED LANGUAGE OR PREPROCESSOR SL2

DATA AND CONTROL FLOW COMPLEXITY

MEASURE SI.3

CODING SIMPLICITY MEASURE SL.4
MODULE TESTING MEASURE VS.i

INTEGRATION TESTING MEASURE VS.2

SYSTEM TESTING MEASURE VS.3

VERIFIABILITY MODULAR IMPLEMENTATION MEASURE MO.2

MODULAR DESIGN MEASURE MO.3

QUANTITY"OF COMMENTS SD.I
EFFECTIVENESS OF COMMENTS MEASURE SD.2

DESCRIPTIVENESS OF IMPLEMENTATION

LANGUAGE MEASURE SD.3

DESIGN STRUCTURE MEASURE SI.1
STRUCTURED LANGUAGE OR PREPROCESSOR 51.2

DATA AND CONTROL FLOW COMPLEXITY

MEASURE 51.3
CODING SIMPLICITY MEASURE 5I.4 I
SCOPE OF FUNCTION MEASURE SP.1

MODULE TESTING MEASURE VS.1

*Acronym references relate to definitions in Appendix C

2-31

r ,' r~~~~~~~~~.... %........... . -. . .. .-...-....... _. ...-. .. .. .. -...-.. •...... .....-....-.-.....- -...

* q- . , . ,,..- , -. . * , ' ' % , '- -* -.. . ' ,: ? '" " " , ' , ' _ " -, . ' ' . ' " ' '' , " "



Table 2.4-3 (Continued)

QUALITY

FACTOR METRICS kCRONYM*

VERIFIABILITY INTEGRATION TESTING MEASURE VS.2

(continued) SYSTEM TESTING MEASURE VS.3

FLEXIBILITY MODULE REFERENCE BY OTHER MODULES GE.I

IMPLEMENTATION FOR GENERALITY CHECKLIST GE.2

MODULAR IMPLEMENTATION MEASURE MO.2

MODULAR DESIGN MEASURE MO.3

QUANTITY OF COMMENTS SD. I

EFFECTIVENESS OF COMMENTS MEASURE SD.2

DESCRIPTIVENESS OF LANGUAGE MEASURE SD.3

DESIGN STRUCTURE MEASURE SI.1

STRUCTURED LANGUAGE OR PREPROCESSOR SI.2

DATA AND CONTROL FLOW COMPLEXITY

MEASURE SI.3

CODING SIMPLICITY MEASURE SI.4

PORTABILITY SOFTWARE SYSTEM INDEPENDENCE MEASURE ID. I

MACHINE IrDEPENDENCE MEASURE ID.2

MODULAR IMPLEMENTATION MEASURE MO.2

MODULAR DESIGN MEASURE MO.3

QUANTITY OF COMMENTS SD.I

EFFECTIVENESS OF COMMENTS MEASURE SD.2

DESCRIPTIVENESS OF LANGUAGE MEASURE SD.3

REUSABILITY DATA BASE SYSTEM INDEPENDENCE AI.l

DATA STRUCTURE AI.2

ARCHITECTURE STANDARDIZATION AI.3

MICROCODE INDEPENDENCE AI.4

ALGORITHM AI.5

ACCESS NO-CONTROL DA. I

*Acronym references relate to definitions in Appendix C

2-32

. . . ,..---

. . . ., . -.. ... . . ... . . . ,, ,,.. ... , . 4. 4, , , - . . . ... ,.. .. .,. ...

• .. ...• .. '... ',,,.....y .'....''- . ,..;-;v,,,,,c-.-,..--....,',*'.- J', .-; :. .- . ": '.j . " .



• • . . . . . . . " -
°  

° " "" "" °" " "" ' " " " " . '

Table 2.4-3 (Continued)

QUALITY

'FACTOR METRICS NCRONYM*

REUSABILITY WELL-STRUCTURED DOCUMENTATION DA.2

(continued) SELECTIVE USABILITY DA.3

FUNCTION SPECIFICITY FS.1

FUNCTION COMMONALITY FS.2

FUNCTION COMPLETENE5S FS.3

MODULE REFERENCE BY OTHER MODULES GE.I

IMPLEMENTATION FOR GENERALITY CHECKLIST GE.2

SOFTWARE SYSTEM INDEPENDENCE ID.1

MACHINE INDEPENDENCE ID.2

MODULAR IMPLEMENTATION MEASURE MO.2

MODULAR DESIGN MEASURE MO.3

INTERFACE COMPLEXITY SC. I
PROGRAM FLOW COMPLEXITY SC.2

APPLICATION FUNCTIONAL COMPLEXITY SC.3

COMMUNICATION COMPLEXITY SC.4

STRUCTURE CLARITY SC.5

QUANTITY OF COMMENTS SD.l

EFFECTIVENESS OF COMMENTS MEASURE SD.2
DESCRIPTIVENESS OF LANGUAGE MEASURE SD.3

DESIGN STRUCTURE MEASURE 51.1

STRUCTURED LANGUAGE OR PREPROCESSOR SI.2

DATA AND CONTROL FLOW COMPLEXITY
Z'" MEASURE S1.3

CODING SIMPLICITY MEASURE SI.4

INTEROPERABI- DATA STORAGE EXPANSION MEASURE AG. I

LITY COMPUTATIONAL EXTENSIBILITY MEASURE AG.2

CHANNEL EXTENSIBILITY MEASURE AG.3

DESIGN EXTENSIBILITY CHECKLIST AG.4

*Acronym references relate to definitions in Appendix C

2-33

..-,.............-. ............. ................-. ................. ....................-...............-....... : ....- :.....::::
,-..a..'.-'.- .- .-.'.-'.." .'.- ......'.......*.'.'-.....-..-....".....-....-..,...-.....,.......-.........-........,..... '*.. ..: ;-." -



Table 2.4-3 (Continued)

QUALITY

FACTOR METRICS ACRONYM*

INTEROPERABI- COMMUNICATION COMMONALITY CHECKLIST CL.I

LITY DATA COMMONALITY CHECKLIST CL.2

(continued) COMMON VOCABULARY CHECKLIST CL.3

USER INPUT INTERFACE MEASURE CM..

USER OUTPUT INTERFACE MEASURE CM.2
FUNCTIONAL OVERLAP MEASURE FO..

SOFTWARE SYSTEM INDEPENDENCE MEASURE ID.l

MACHINE INDEPENDENCE MEASURE ID.2

MODULAR IMPLEMENTATION MEASURE MO.2

MODULAR DESIGN MEASURE MO.3

COMMUNICATIONS COMPATIBILITY CHECKLIST SY."

DATA COMPATIBILITY CHECKLIST SY.2

HARDWARE COMPATIBILITY CHECKLIST SY.3

SOFTWARE COMPATIBILITY CHECKLIST SY.4

DOCUMENTATION FOR OTHER SYSTEM SY.5

EXPANDABILITY DATA STORAGE EXPANSION MEASURE AG.

COMPUTATION EXTENSIBILITY MEASURE AG.2

CHANNEL EXTENSIBILITY MEASURE AG.3

DESIGN EXTENSIBILITY CHECKLIST AG.4

MODULE REFERENCE BY OTHER MODULES GE.I

IMPLEMENTATION FOR GENERALITY CHECKLIST GE.2

MODULAR IMPLEMENTATION MEASURE MO.2
MODULAR DESIGN MEASURE MO.3

DESIGN STRUCTURE MEASURE SI.1

STRUCTURED LANGUAGE OR PREPROCESSOR 51.2
DATA AND CONTROL FLOW COMPLEXITY SI.3

CODING SIMPLICITY MEASURE SI.4

SCOPE OF FUNCTION MEASURE SP.I

SYSTEM/DATA INDEPENDENCE CHECKLIST VR.l

*Acronym references relate to definitions in Appendix C

2-34

- . . .



'7-7 .... ° ....

2.4.2 Example of Metrics

Using the example of paragraph 2.2.2, the quality ratings would be specified as follows.

3a. Specific Quality Factor Ratings

Ratings for two of the five important quality factors can be established using

Table 2.4-1.

Reliability .99 Require less than one error per 100 lines of code to be

detected during formal testing.

Maintainability .8 Require less than or equal to 2 man days as an average

level of maintenance for correcting an error.

These ratings can also be established at each measurement period (see Table 3.1-1)

during the software development process as follows:

MEASUREMEN"T PERIODS

QUALITY

FACTOR REO PDR CDR IMPL ACCEPT

Reliability .8 .8 .9 .9 .99

Maintainability .7 .7 .8 .8 .8

The progressively better scores are required because there is more detailed

information in the later phases of the development to which to apply the metrics

and more confidence in the metrics' indication of quality. This is analagous to the

concept of reliability growth. For other quality factors see step 3b.

3b. Identify Specific Metrics to be ApDlied

." The metrics to be applied to assess the level of each important quality factor

are chosen from Table 2.4-3. A subset is shown in Table 2.4-4.

2-35

• .. , .... ,,....,.. ,. , ,.o.,., , .,.°.,.,,++.+,,,., ,+,..,..,..,...... ... .-........ ..-.-...... ,.. ..... .. ,,-.... .,,.



Table 2.4-4 Software Metric to Factor Relationship-Subset

QUALITY FACTOR "

Rel- Main- Cor- Usa- Int -iabi- tain - rect- bil - erop-
lity abil - ness ity era-

ity, bil-
METRIC ity

Accuracy Checklist X
Error Tolerance Checklist X

Complexity Measure X X
Coding Simplicity Measure X X
Modular Implementation Measure X

Quantity of Comments x
Effectiveness of Comments X

Cross Reference Checklist X
Completeness Checklist X
Halstead's Measure x
Data Consistency Measure x x

User Input Interface Measure x x
Communications Commonality X
Data Commonality Checklist X

Documentation for Other Systems X

2-36

.. %".-... .. .. ...
I*- .

-
.m



3c. Specify Threshold Values
S The following threshold values are established based on past experience and tv

provide a goal for the quality factors that were not given ratings. They werg
derived by determining the average scores of past applications of the metrics.

Cross Reference Checklist .9
Completeness Checklist 1.0
Halstead's Measure .9
Data Consistency Measure .6
Training Checklist .75
User Input Interface Measure .75
User Output Interface Measure .75
Communications Commonality .8
Data Commonality Checklist .8

2.5 EVALUATION OF DEVELOPMENT PLAN

In an acquisition environment the initial benefits of utilizing the quality metrics concepts
are realized in the source selection process. The acquisition office should include the
quality goals established as software requirements in the Request for Proposal. The
software attributes should also be identified as required characteristics in the software
and the metrics established as the vehicles for assessing their existence. The bidders
should be required to describe how they plan to provide those characteristics in the

* - software. This discussion should be provided in the portion of the proposal that describes
their development plan.

The description of the bidders approach for including the required attributes in the

* . software not only forces acknowledgement of these additional requirements but also
provides additional information with which to evaluate the bidders during source selec-
tion.

2-37



. . . . . . . . . . - -.

SECTION 3
APPLYING METRICS

3.1 WHEN TO TAKE MEASUREMENTS

The software quality metrics are oriented toward the availability of information about the

software system as it progresses in its development. In the early phases of the

development, the metrics are applied to the documentation produced to describe the

concepts of the system and its design. In the later phases the metrics are oriented not

only to documentation but also to the source code that is available.

Thus, the application of the metrics logically follows the phased development of software.

The first application of the metric is at the end of the requirements analysis phase. The

next application is during design. If the design phase has been decomposed into a

preliminary design phase and a detailed design phase, the metrics should be applied at the

end of each of those phases. During implementation, i.e., coding, the metrics oriented

toward the source code should be applied periodically to assess the quality growth

exhibited as the code evolves. The timing of the application of the metrics is shown in

Figure 3.1-1. The application of the metrics can be done during or just prior to formal

customer reviews (as shown in Figure 3.1-1) or during equivalent activities conducted by

the development personnel

In the case of reusable software, metrics may already exist from being applied during a

previous project. Other metrics may change when re-evaluated later in the life-cycle,

e.g., during maintenance. Maintainability, reliability and expandability factors may be re-

evaluated as maintenance and upgrade activities occurred for fielded systems.

3-1

- . ..-. .. ,

.- .- -:.-. .-..-.- -- '--'- -- ---... Y . ..-..-. ""- -.- '-'- "-.-.. . . .-. .- ,-. .-.. . ...... .,.-.. . . . .,--. ... .--. .--. .-.-. .
.. . . . .. .. . .. .. .. ........ . .. .



PROGRAMMING
REQUIREMENTS DESIGN AND TEST
ANALYSIS _____CHECKOUT INTEGRATION

-REQUIREMENT

REVIEW -PERIODIC

APPLICATION
* DURING

CODING
AND

4.. TESTING

PRELIMINARY

DESIGN
REVIEW

4. CRITICAL

DESIGN
REVIEW

VALIDATION

AND
ACCEPTANCE

TEST

REVIEW

ACCEPTANCE

Figure 3.1-1 Timing of Metrics Application

3-2



3.2 SOURCES OF QUALITY INFORMATION

A typical minimum set of documents and source code are shown in Figure 3.2-1. These
documents plus the source code are the sources of the metrics information used to derive

the quiality ratings.

3-3



... ~

PRELIM- PROGRAMMING TEST
REQUIREMENTS INARY DETAILED AND AND

ANALYSIS DESIGN DESIGN CHECKOUT INTEGRATION

REQUIREMENTS

SPEC PRELIMINARY 1 1
DESIGN DETAILED

0 SPEC DESIGN o SOURCE CODE
USER'S MAN- SPEC DETAILED * TEST

UAL (DRAFT) * TEST PLAN * DESIGN RESULTS
"- AND SPEC

5, PROCEDURES (UPDATED) * USER'S

MANUAL

(FINAL)

5%.%

Figure 3.2-1: Sources of Quality Metric Data

S...

4.e ..

3-4

%%

.5,

3-4""

"." . *.. .,:-.. .

'. ,S'-. i. * ," .,, ,*S,*."," , """. , ,-. -° '-. .- ,' % "."- . , .""" .4. .*°. *5....'* ...- '-. '... '.'- "." .-. "



3.3 APPLICATION OF THE METRICS

Application of the metrics can be accomplished by Using: the metric worksheet contained
in Appendix A for gathering data, the metric tables in Appendix B to translate the

* measurements into metric scores and the data in Appendix C for definitions and

* - interpretations of individual metrics.

The metric worksheets are organized as follows. In the header portion of the worksheet is
the information which (1) identifies the phase during which the worksheet is initially used

and the level (system or module) to which the worksheet applies, (2) identifies the system
and the module to which the worksheet has been applied, and (3) identifies the date and
the inspector who took the measurements. The remaining portion of each worksheet
contains V'ie measurements to be taken and questions to be answered. These measure-

* ments and questions are organized by quality factors identified in parentheses. Each
logical group of measurements and questions have a group identifier and group number.
Each question contains a reference to the applicable metric.

When applying the measurements, only those measurements and questions that relate to
the quality factors chosen as quality goals should be applied. A complete metric
worksheet correlation matrix is shown In Table 3.3.1. The metric worksheet correlation
matrix provides a quality factor to metric relationship. It also provides an individual

metric to metric worksheet relationship.

Metric Worksheet #1 and.#2 contain system level metrics and are applied at the system or
* major subsystem (CPCI) level to the System Requirements Specification, the Preliminary

Design Specification, the User's Manual, and the Test documentation. Metric Worksheets
#3 and #4 contain module level metrics and are applied to each module's design (Detailed -
Design Specification) and implementation (source code).

The metric tables in Appendix B are utilized to translate the raw data from the metric

* worksheets into individual metric scores. The metric tables in Appendix B are listed

alphabetically by quality criteria. The metric tables are arranged as follows. In the
* header portion of the table is a reference to the quality criteria and the quality factors.
* The body of the table contains the instructions for computing individual metric scores

- with a reference to the metric worksheet that the raw data may be obtained from.

3-5,

4 l



i.- 4v%,.

Table 3.3-1 m ic wmsmUn coxuIATo

QDUT I.C=S" z

IIII~~~ufI -__ _ Ii It t I i
AV.1 1.2 2.2 3.2 (3.2).4.11

"x x AgO.ALY MANAE-

AN. 2.2 3.2 4.2 2.2
AM.2 1.2 3.2 4.7
M.3 1.2 3.2 4.2"M.4 1.2 2.2 2.2
AM 1.2 2.2 2.2AN. 1.2 2.2 3.2 2.2
AN.? 1.2 2.2 3.2 2.2

APPL ICATION
INDPIOEENCE

A.! 2.S 3.5 2.5
A1.2 2.6 4.1.4.9 2.8
A1.3 2.5 4.1 2.5
A1.4 Z.S 2.S
£1.5 2.5 3.5 4.6 2.5

X I AUGMENT- ""
ABILITY

AG.! 1.6 2.6 3.6 (3.6).4.6 2.6£6.2 1.6 2.6 3.6 4.6.4.11 2.6
A6.3 1.6 2.6 3.6 4.11 2.6AG.4 1.6 2.6 2.6

x AUTONOMY,"AU.1 1.7 2.7 3.7 4.7.4.11 2.7 ' '

AU.2 1.7 2.7 2.7 -

CL.A 1.7 2.7 2.7
CL.2 1.7 2.7 2.7
CL.3 1.10

x COISWICATIVE-

,6.1 1.9 2.9 2.9e, cN.2 1.9 2.9 2.9 -'... . ... 2.

COMPLTENESS
C¢.1 1.4 2.4 3.4 (3.4) 2.4

CONCISENESS
CO.1 4.4

1 x 
CONSISTENCYC5.1 3.8 (3.8) i.,

CS.2 1.8 2.8 3.8 (3.8),4.9 2.8

x DISTRIBUTED-
NESS01.1 1.1,1.8 2.1,2.8 3.1 2.1.2.8

DOCUMENT
ACCESSIBILITY
" 'A. 1.11
A.2 1.11

DA.3 1.11 4.6

EFFECTIVENESS
1". 1.3 2.3 3.3

F.2 2.3 3.3 4.3.4.11 2.3
EF.3 2.3 3.3 (3.3) 4.3. 2.3

4.9. 4.11 ,
EP.4 2.3 4.3.4.9, 2.3

FUNCTIONAL
OVERLA

d FO.1 1.13

3-6

3%

, . . - , % % " . ,., .. 
• , , * ., ,;, ,'%,', ,-~~~~~~~~~~~~~~~~....,,. , ,.. ._,, . ...... ;......... .... . .... ....... .. .... ., ... ,.



-~~~~~; .. .. .. . .. .. 07

Table 3.3-1 mmtc ws cou tm (continued)
QUALITY FACTORS NR Ts

I 1.A 15
x FUNCTIOPAL

SCOPE
FS.1 3.1 4.6
FS.2 1.5 4.7
FS.3 1.5

x . GENERALITY
GE. 1 2.6 2.6
GE.2 3.6 4.6

X x X 11tDEPENONCE
10.1 3.5 4.5,4.10
10.2 3.5 (3.5).4.7

4.10

. X ) X X X X WOULARITY
NO.2 Li1 3.5 (3.5)4.5
NO.3 1.1 2.1 3.1

X OPERABILITY
OP.1 1.9 2.9 2.9

I RECONFIGUR-
ABILITY

RE.1 1.7.1.8 2.7.2.8 2.7,2.8

x x x x SELF-
DESCRIPTIVENESS

SO.1 4.6
SD.2 4.8,4.9
S5.3 4.8

x x x x x X SIMPLICITY
SI.1 1.1 2.1,2.8 3.1 4.1 2.1,2.6
SI.2 4.1
5I.3 3.1 4.1
S1.4 1.1 3.1 4.1.4.9

,,XI SPECIFICITY
SP.1 3.1

x SYSTEM
ACCESSIBILITY

SA.1 1.12 2.12 2.12
SA.2 1.12 2.12 2.12

i "SYSTEM CLARITY
SC.1 4.1
SC.2 4.1
SC.3 2.1 4.1 2.1
SC.4 4.1
SC.5 4.1

X SYSTEM
COMPATIBILITY

SY.i 2.11 L.ii"SY.2 2.11 1.11
S1.3 2.11S.4 2.11

;' . Y.5 1.11

A xTRACEABILITY 1.24 34
TR.1 1.4 2.4 3.4

S TRAINING
TN.I 2.9 2.9

i.. I VIRTUALITY
VR.l 1.8 2.1. 2.8 2.1.2.8

I I VISIBILITY
VS.1 2.10 2.10
VS.2 2.10 2.10
VS.3 2.10 2.10

* C) Rhppleatin. of metric During Subsequent Fhass

3-7

r .. . .. .. ............................ ...... ...... -.. ,.,



Definitions and interpretations of the individual measurements contained in the work-I

sheets are found in Appendix C.

As shown in Figure 3.3-1, the worksheets may be applied several times during the

development. For example, Metric Worksheet #3, which is applied for each module to the

detailed design document during design, is also applied to the detailed design document

after it has been updated to reflect the actual implementation. The worksheet does not

have to be totally reapplied for each successive application. It should only involve

p - updates to reflect the changes made to the system since the previous application of the
% .~ worksheet. The successive applications of any worksheet should require considerably less

effort than the original application.

Worksheet Requirements Preliminary Detailed Test and
Number Analysis Design jDesign Implementation Integration

4' Requirements
1 Spec

Preliminary Preliminary 13Test
Design Spec 3Design Spec 3Results

Users Manual:3 Users Manual 3 Users Manual
(Draft 0 (Draf t) 3:(Final):

Detail :Detail3
Design Spec 3Design Spec 3

3
Test Plans 3Test Plans
& Procedures 3& Procedures

LSS.S.*eS.S

Source Code

Detail Design
Spec (Updated)

_______I 1st Application
-------- ---- ----- Reapplication

Figure 3.3-1 Application of the Metric Worksheets

3-8 1



.9

3.4 TECHNIQUES FOR APPLYING METRICS

Section 1., identified organizational approaches for utilizing the quality metric concepts

during software development. These approaches included both acquisition environments

and internal development environments. The purpose of this section is t.) describe, at a

lower level, how the metrics would be applied in either case.

The first technique for applying the metrics is by formal inspection. The formal

inspection is performed by personnel of an organization independent of the development

organization (the acquisition office, an independent quality assurance group, or an

independent IV&V contractor). The metric worksheets are applied to delivered products

at scheduled times and the results are formally reported.

The second technique is to utilize the worksheets during structured design and code

walkthroughs held by the development team. A specific participant of the walkthrough

can be designated to apply the worksheets and report any deficiencies during the

walkthrough, or a quality assurance person can participate in the walkthroughs to take the

measurements of the design or code.

The last technique is for the development team to utilize the worksheets as guidelines,

self-evaluations or in a peer review mode to evaluate or enhance the quality of the

products they produce.

3-9

.............. -A-

.. K<Y~-.-. * *. 2 - .* .. *:** i** .~ -.

,U*~ " .



SECTION 4

ASSESSING THE QUALITY OF THE SOFTWARE PRODUCT

4.1 INTRODUCTION

The benefits of applying the software quality metrics are realized when the information

gained from their application is analyzed. The analyses that can be done are described in
the subsequent paragraphs. There are three levels at which analyses can be performed.
These levels are related to the level of detail to which the evaluating organization wishes

to go in order to arrive at a quality assessment.

4.2 INSPECTOR'S ASSESSMENT

The first level at which an assessment can be made relies on the discipline and

consistency introduced by the application of the worksheets. An inspector, using the

* worksheets, asks the same questions and takes the same counts for each module's source
code or design document, etc. that is reviewed. Based on this consistent evaluation, a
subjective comparison of products can be made.

Ia. Document Inspector's Assessment
The last section in each, worksheet is for the inspector to make comments on
the quality observed while applying the worksheet. Comments should indicate

an overall assessment as well as point out particular problem areas such as
lack of comments, inefficiencies in implementation, or overly complex control

flow.

lb. Compile Assessments for System Review

By compiling all of the inspector's assessments on the various documents and
source code availabie at any time during the development, deficiencies can be

identif ied.

4-1



4..3 SENSITIVITY ANALYSIS

The second level of detail utilizes experience gained through the application of metrics

and the accumulation of historical information to take advantage of the quantitative

*nature of the metrics. The values of the measurements are used as indicators for

evaluation of the progress toward the high quality goals or requirements.

At appropriate times during a large-scale development, the application of the worksheets

allows calculation of the metrics. The correspondence of the worksheets to the metrics is

* shown in Appendix B. The results of these calculations is a matrix of measurements. The

metrics that have been established to date are at two levels, system level and module

level. The approach described is for the module level metrics however it is applicable to

both levels.

A n by k matrix of measurements results from the application of the metrics to the

existing products (e.g., at design, the products might include review material, design

specifications, test plans, etc.) where there are k modules and n module level measure-

ments applicable at this particular time.

mnl Mnk

N This matrix represents a profile of all the modules in the system with respect to a number

of characteristics measured by the metrics. The analyses that can be performed are

* described in the following steps:

2a. Assess Variation of Measurements

Each row in the above matrix represents how each module in the system
scored with respect to a particular metric. By summing all the values and

calculating the average and standard deviation for that metric, each individual

module's score can then be compared with the average. Those modules that

score more than one standard deviation below the average should be reported

for further examination. These calculations are illustrated below:

4-2



.; -.. . .

k
for metric i; Average Score Ai  E Mij/k

J.1

Standard Deviation = i ((Mij-Ai)2/k)

Report Module j if Mij< Ai - i"

2b. Assess Low System Scores

In examining a particular measure across all modules, consistently low scores
may exist. It may be that a design or implementation technique used widely

by the development team was the cause. This situation indicates the need for
a new standard or stricter enforcement of existing standards to improve the
overall development effort.

2c. Assess Scores Against Thresholds
As experience is gained with the metrics and data is accumulated, threshold
values, or industry acceptable limits, may be established. The scores, for each

module for a particular metric should be compared with the established

threshold. A simple example is the percent of comments per line of source
code. Certainly code which exhibits only one or two percent measurements
for this metric would be identified for corrective action. It may be that ten
percent is a minimum acceptable level Another example is the complexity
measure. A specific value of the complexity measure greater than some

chosen value should be reported for corrective action.

Report Module j if Mij <T i

Where Ti = threshold value specified for metric L

4-3

.7 C-

. .- - - - - - - -- - - - - - - - - - - - - -



4.4 USE OF NORMALIZATION FUNCTION TO ASSESS QUALITY

The last level of assessing quality is using the normalization functions to predict the

quality in quantitative terms. The normalization functions are utilized in the following

manner.

At a particular time in the development process there is an associated matrix of

coefficients which represent the results of linear multivariate regression analyses against

empirical data (past software developments). These coefficients, when multiplied by the

measurement matrix results in an evaluation (prediction) of the quality of the product

based on the development to date. This coefficient matrix, shown below, has n columns

for the coefficients of the various metrics and 13 rows for the 13 quality factors.

c 1 ,1 c 1 2 ... c 1,n

c c13,1 13,n

To evaluate the current degree or level of a particular quality factor, i, for a module, j,
the particular column in the measurement matrix is multiplied by the row in the

coefficient matrix. The resultant value:

rj i,lI i~j i,2 2,j +C i,n m j
is the current predicted rating of that module, j for the quality factor, i. This predicted

.4 rating is then compared to the previously established rating to determine if the quality is

at least as sufficient as required. The coefficient matrix should be relatively sparse

(many C..j = 0). Only subsets of the entire set of metrics applicable at any one time

relates to the criteria of any particular quality factor.

Multiplying the complete measurement matrix by the coefficient matrix results in a

ratings matrix. This matrix contains the current predicted ratings of each module for

each quality factor. Each module then can be compared with the preset rating for each

quality factor.

44.-



2 . ... . Ii

CM=R T=

r
13,1 r3,k

This represents the most formal approach to evaluating the quality of a product utilizing

the software quality metrics. Because the coefficient matrix has been developed only for

a limited sample in a particular environment, it is neither generally applicable nor has

statistical confidence in its value been achieved.

To use the normalization functions that currently exist, the following steps should be

performed.

3a. Apply Normalization Function

Table 4.4-1 contains the normalization functions that currently exist. If any

of the quality factors identified in that table have been specified as a

requirement, then the metrics identified in the table should be substituted into

the equation and the predicted rating calculated. Normalization functions

which include several metrics can be used if available, otherwise functions for

individual metrics should be used. This predicted rating should be compared

with the specified rating.

To illustrate the procedure, the normalization function that has been deve-

loped for the factor Flexibility will be used. The normalization function,

applicable during the design phase, relates measures of modular implementa-

tion (MO.2) to the flexibility of the software. The predicted rating of

flexibility is in terms of the average time to implement a change in

specifications. The normalization function is shown in Figure 4.4-1. The

measurements associated with the modular implementation metric are taken

from design documents. The measurements involve identifying if input, output

and processing functions are mixed in the same module, if application and

machine-dependent functions are mixed in the same module and if processing

is data volume limited. As an example, assume the measurements were

applied during the design phase and a value of 0.65 was measured. Inserting
this value in the normalization function results ' a predicted rating for

flexibility of .33 (.51 x .65) as identified by point A in Figur,- 4.4-1. If the

-5



Acquisition Manager had specified a rating of 0.2, which is identified by point
B, he has an indication that the software development is progressing well with

respect to this desired quality.

An organization using this manual is encouraged to establish these functions in
its specific environment by following the procedures described in (MCCA77),
(MCCA8O), or Volume I of this report.

4-6

• ... 
"

4-6 2

,s-4

4 . .- V-*

..-:-.-.-~-------- ~ ,. - -- 4. .',



Table 4.4-1 Normalization Functions

RELIABILITY (DESIGN)

MULTIVARIATE .18 MAMI + .19 MSI3
.FUNCTION

INDIVIDUAL .34 M AM. Error Tolerance/Control Checklist[ . IDIVIDUL .34 AM. I -

FUNCTIONS .34 MS1.3  SI.3 Data and Control Flow Complexity

Measure

RELIABILITY (IMPLEMENTATION)

MULTIVARIATE .48 M + . M4MAM. I " M1.1I .

FUNCTION

INDIVIDUAL .57 MAMI AM.I Error Tolerance/Control Checklist

FUNCTIONS .58 MS 1  Sl.I Design Structure Measure

.53 MS1 3  51.3 Data and Control Flow.,.

.53 MSI 4  Complexity Measure

S.4 Coding Simplicity Measure

MAINTAINABILITY (DESIGN)

INDIVIDUAL .57 MSI 3  51.3 Data and Control Flow

FUNCTIONS Complexity Measure
.53 MSI SI.l Design Structure Measure

.4-.

4-7-

* -. a .* . . . .. ...~i , . .... . .



Table 4.4-I (Continued)

MAINTAINABILITY (IMPLEMENTATION)

MULTIVARIATE -. 2+.61 -M SI.3+ .l 4 MMo.2+. 3 3SD.2
FUNCTION

INDIVIDUAL SI.3 Data and Control Flow

FUNCTIONS Complexity Measure

2.1 M SI. 3  MO.2 Modular Implementation Measure

.71 MSD 2  SD.2 Effectiveness of Comments

.6 MSD. 3  Measure

.5 MSII SD.3 Descriptiveness of Language

.4 Ms. 4  Measure

SI.l Design Structure Measure

SI.4 Coding Simplicity Measure

FLEXIBILITY (DESIGN)

INDIVIDUAL .51 MMO 2  MO.2 Modular Implementation Measure

FUNCTIONS .56 MGE. 2 GE.2 Implementation for Generality

Checklist

FLEXIBILITY (IMPLEMENTATION)

-i rJLTIVARIATE .22M + .09M
MO. 2 . MGE.2 +.MSD- 3

FUNCTION

INDIVIDUAL

FUNCTIONS .6 MMO. 2  MO.2 Modular Implementation Measure

. 7 2 MGE2 GE.2 Implementation for Generality

.59 MS 2  Checklist

.56 MSD SD.2 Effectiveness of Comments

Measure

SD.3 Descriptiveness of Language

Measure

4-8

S.- . . "" . ..
" ". . .



7: :1-__.- 

Table 4.4-1 (Continued)

PORTABILITY (IMPLEMENTATION)

MULTIVARIATE -1.7 + .1 9 MSD I + .76MsD 2 + 2 5MSD.3 + 6 4 MID 2

FUNCTION " "

INDIVIDUAL

FUNCTIONS 1.07 M5I 1  SD..I Quantity of Comments

-1.1 MID 1 SD.2 Effectiveness of Comments

1.5 MSD 2  Measure

SD.3 Descriptiveness of Language

Measure
ID.2 Machine Independence Measure

__-__SI. Design Structure Measure

REUSABILITY

MULTIVARIATE .13 + .29 MSI. + .08M 5 1 3

FUNCTIONS .10 + ,08MsD 1 + .I 9 MsD 3 + .07MI 3SD I° SD S.

.11 + .0 4 MFsI + .0 6 MsDI + .1 6 MsD 3 + .07Msi 3

.11 + .0 3 MFS I + .04MSC 4 + .0 6 MSDI + .I 4 MSD,3

+ .06M sI 3

INDIVIDUAL

FUNCTIONS .22 + .12 * MFS, 1 FS. I Function Specificity

..' .05 + .28 * MGE. 2 GE.2 Implementation for Generality

.14 + .17 * Checklist'. " ID.2

.20 + .19 * MMO 2  ID.2 Machine Independence Measure

.18 + .21 * MSC . I MO.2 Modular Implementation Measure

.22 + .14 * MSC" SC.1 Interface Complexity

.14 + .24 * MSC. SC.2 Program Flow Complexity

.23 + . 16 * MSD 1 SC.4 Communication Complexity . -

.01 + .36 * MSD. 3  SD.1 Quantity of Comments

.10 + .37 * MSI 1 SD.3 Descriptiveness of Language

.26 . 13 * MSI 3  Measure

4-9

. . .



N Table 4.4-1 (Continued)

-14 +.56 M 51.1 Design Structure Measure
- SI.3 Data and Control Flow Complexity

Measure
51.4 Coding Simplicity Measure

4-1



4-. -.0

.3

.0.0

.2' .36.

r.4.* "t F
% 4

.6 *"-

'U " 'U
I "."

. .1 - ,, .

.-.-
.1 .3 .3 .4 ,S .6 .55. . 3 ,I ,! 1.6

NU.? UOUIUIR INeL[IIATIawl IASUJIOSICNl IPlAS

" "" Figure 4.4.1 Normalization Function for Flexibility During Design

5-$ . S.ii

.: . : .. -.. . ., , .- .,. .. . . .. . . . .. . . , .. . , .. , .. * ., ., . . . . . .. .. . . . . .. . . . .. : :: ; :: . .:; ;
5 5. . . . - . . . - , . ,. . . . . . . - . 1 - . : -$- . . : . . : . . - . ; . - . - . : ,



3b. Calculate Confidence in Quality Assessment

Using statistical techniques a level of confidence can be calculated. The

calculation is based on the standard error of estimate for the normalization

function and can be derived from a normal curve table found in most statistics .'-

texts. An example of the derivation process is shown in Figure 4.4-2 for the

situation described above. Here it is shown that the Acquisition Manager has .-

an 86 percent level of confidence that the flexibility of the system will be

better than the specified rating.

MEAN .33o 1
II

(SPECIFIED RATING) .2 -

MEAN = .33 (PREDICTED RATING)

STANDARD DEVIATION =.12 (STANDARD ERROR OF ESTIMATE)

LEVEL OF CONFIDENCE = Pr [x> .2 = .86 (SHADED AREA)

Figure 4.4-2 Determination cf Level of Confidence

Ir

J 4-12

• . o# ° o ,. ° . °j .- - .. - • - . . . • . -. ° " ° . . - . . - - ° . o o- ... . ,. . '- ° - - -

" .< " " ,' '.. . . . . . . . .- o-O . -,..° °° .% " .o ... °°--°' " . . -° % ". . ". " . '. % _. °- . .- _° - ,



4.5 REPORTING ASSESSMENT RESULTS

Each of the preceding steps described in this section are easily automated. If the metrics

are applied automatically then the metric data is available in machine readable form. If

the worksheets are applied manually, then the data can be entered into a file, used to

calculate the metric, and formatted into the measurement matrix format. The automa-

tion of the analyses involve simple matrix manipulations. The results of the analyses

should be reported at various levels of detail. The formats of the reports are left to the

discretion of the implementing organization. The content of the reports to the different

managers is recommended in the following paragraphs.

Ia. Report to the Acquisition Manager/Development Manager

The report content to the Acquisition Manager and the Development Manager

should provide summary information about the progress of the development

toward the quality goals identified at the beginning of the project.

For example if ratings were specified for several quality factors, the current -

predicted ratings should be reported.

PREDICTED RATING

QUALITY GOALS BASED ON DESIGN DOCUMENT

RELIABILITY .9 .

MAINTAINABILITY .8 .95

If specific ratings were not identified but the important qualities were identified, a report
might describe the percentage of modules that currently are judged to be below the

average quality (as a result of the sensitivity analysis) or that are below a specified 7

threshold value (as a result of the threshold analysis). These statistics provide a progress

status report to the manager. Further progress status is indicated by reporting the quality

growth of the system or of individual modules. The quality growth is depicted by
reporting the scores achieved during the various phases of development. Ultimately the

ratings should progressively score higher than those reported during the requirements

phase. This progress is based on the identification of problems in the early phases which

can then be corrected.

l b. Reports to Quality Assurance Manager

In addition to the summary quality progress reports described in Ia, the quality

4-13



asurance manager and his staff will want detailed metric reports. These

J. reports will provide all of the results of the Analyses described in 4.2, 4.3, and
4.4, and perhaps provide the measurement matrix itself for examinations. In
addition to the detailed reports, the quality assurance manager should be
provided with reports on the status of the application of the metrics
themselves by the quality assurance staff. These status reports will provide
information on the total number of modules and the number which inspectors
have analyzed.

Ic. Reports to the Development Team
The development team -should be provided detailed information on an excep-
tion basis. This information is derived from the analyses. Examples of the

information would be quality problems that have been identified, which
characteristics or measurements of the software products are poor, and which
modules have been identified as requiring rework. These exception reports
should contain the details of why the assessment revealed them as potential

4.. problems. It is based on this information that corrective actions will be taken.

4-14



REFERENCES

(MCCA77) McCall, 3., Richards, P., Walters, G., "Factors in Software Quality",
RADC-TR-77-369, Nov 1977, 3 Vols (A049014) (A049015) & (A049055).

(MCCASO) McCall, 3., Matsumoto, M., "Software Quality Metrics Enhancements",
RADC-TR-80-109, April 1980.

(WEIN72) Weinberg, G., "The Psychology of Improved Programming Performance,"
DATAMATION Nov 1972.

(CAVA78) Cavano, J., McCall, J., "A Framework for the Measurement of Software

Quality," Proceedings of the ACM Software Quality Assurance Workshop,
Nov 1978.

(DUVA76) Duvall, L.M., "Software Data Repository Study," RADC-TR-76-387, Dec 76,
(A050636).

(P05T82) Post, 3.V., "The Role of Measurements in the Software Development Process",
Proceeding COMSAC-82 (IEEE Computer Society Sixth International Com-
puter Software and Applications Conference) Chicago, November 1982.

* ~*.Additional references are contained in Appendix A of Volume Ill.

4-1.5



APPENDIX A

METRIC WORKSHEETS

Appendix A contains the metric worksheets which are used to gather metric data

during the software development phases. There are four worksheets, organized by

applicable phase:

Worksheet I - Requirements Analysis

Worksheet 2 - Preliminary Design

Worksheet 3 - Detailed Design

Worksheet 4 - Source Code

A summary of the worksheets is shown on the next page. Each worksheet is divided

* into sections of related questions to ease the data gathering task. The applicable
metric element is referenced by acronym at the end of each worksheet question.

Appendix B, Metric Tables, lists the formula to be used in calculating values for
"' metrics and metric elements.

The contents of this appendix are based on the results of this contract, 'Quality

Metrics for Distributed Systems", F30602-80-C-0330 and the results of contract

F30602-8O-C-0265, "Software Interoperability and Reusability". This appendix includes

a refinement and reorganization of worksheet information initially defined in
RADC-TR-77-369 and RADC-TR-80-109.

- ~ .. 4 . '... . .



-4-4

a bi~a 4

Q A~

0' eN

U N 't ..j

7. - .- 9~

i 1 6- 4,, "- .4

-px

i .4

I* . _.

at EEl O

T. 0ES ~ E(E-x

A-



METRIC WORKSH ET I SYSTEM: DATE:

Ri UIREMENTS ANALYSIS/SYSTEM LEVEL NAME: INSPECTOR:

1.1 STRI CTURE (RELIABILITY, MAINTAINABILITY, VERIFIABILITY, FLEXIBILITY, REUSABLIT"

EXPANDABLITY, SURVIVABILITY, PORTABILITY, INTEROPERABILITY, CORRECTNESS)

I. Is an organization of the system/net wor provided which identifies all software func-

tions and functional interfaces in the system? D.l(l) YN
2. Number of major functions. S1.I(2)
3. Are there no duplicate functions? 51.1(2) Y N

4. Is there a definitive statement of the requirements for the distibution of information

within the data base? DI.I(3) Y N

* '5. Is there an organization of the data base provided which identifies the types of system-
level information and the information flow within the system? DI.l(2) Y N

6. Is there a definitive statement of requirements for code to be written according to a pro-
gramming standard? S1.0(13) Y N

7. Is there a definitive statement of requirements for processes, functions, and modules to

have loose coupling? MO.3(I) Y N
8. Is there a definitive statement of requirements for processes, functions, and modules to

have high cohesion? MO.3(2) Y N

1.2 TOLERANCE (RELIABILITY, SUkVTVABILTY)

1 1. Has an error analysis been performed and budgeted to functions? AY.l(I) Y N
2. Are there definitive statements of the accuracy requirements for inputs, outputs,

4. processing, and constants? AY.1(2) Y N
3. Are there definitive statements of the error tolerance of input data? AM.2(l) Y N
4. Are there definitive statements of the requirements for recovery from computa-

tional failures? AM.3(I) Y N
5. Is there a definitive statement of the requirement for recovery from hardware

faults? AM.4(I) Y N
6. Is there a definitive statement of the requirements for recovery from device

errors? AM.S(I) Y N
7. Are there definitive statements of the requirements for recovery from communication

errors? AM.6(M) Y N

A-3

- ...-.. - . .. -, - . - .- -



MFATRIC WORKSHEET I SYSTEM: DATE:
REQUIREMENTS ANALYSIS/SYSTEM LEVEL NAME: INSPECTOR:

8. Are there definitive statements of the requirements for system recovery from node

or communication failures? AM.7() Y N

S.L.3 PERFORMANCE (EFFICIENCY)

,. Have performance requirements and limitations (flow time for process, including execu-

tion and communication; storage) been specified for the functions to be performed? EF.I(l) Y N

1.4 COMPLETENESS (CORRECTNESS)

1. Is there a matrix relating itemized requirements to major functions which implement

those requirements? TR.(l) YIN

2. Number of major functions identified (equivalent to CPCI). CP..

3. Are requirements itemized so that the various functions to be performed, their inputs
and outputs, are clearly delineated? CP.1(l) YIN

.- 4. Number of major data references. CP.l(2)
5. How many of these data references are not defined? CP.l(2)

6. How many defined functions are not used? CP.l(3)

7. Ho" many referenced functions are not defined? CP.1(4)
8. How many data references are not used? CP.l(2)

9. How many referenced data references are not defined? CP.l(6)
10. Is the flow of processing and al'decision points in that flow described. CP.1() Y N
II. How many problem reports related to the requirements have been recorded? CP.1(7)
12. How many of those problem reports have been closed (resolved)? CP.1(7)

l.5 FUNCTIONAL SCOPE (REUSABILITY)

1. Is the function constructed in such a way to encourage its use elsewhere either in
part or in total? FS.2() Y N

2. Are the input quantities well defined? FS.2(2) Y N

3. Are the output well defined and easy to interpret? FS.2(4) Y N

4. Do the functions performed satisfv one of the specified requirements? FS.2(5) Y N

5. Number of function requirements satisfied by the reusable software? FS.3(I)

6. Total number of requirements? FS.3(1)

A-4

oA

...........................



4... , ,

,

METRIC WORK5HEET I SYSTEM: DATE:
T ALYS/SYSTEM LgVEL NAME; INSPECTOR:

1.6 CHANGEABILITY (INTEROPERABLITY, EXPANDABLITY)

1. .Is there a definitive statement of requirements for spare storage capacity (memory and

auxiliary storage)? AG.1(2,3) Y.N

2. Is there a definitive statement of requirements for spare processing capacity? AG.2(3) Y N
3. Is there a definitive statement of requirements for spare I/O and communication channel

capacity? AG.3(l.2) Y N
4. Is there a definitive statement of requirements for interface compatibility among all the

processors, communication links, memory devices, and peripherals? AG.4(l) Y N
.,. Is there a specific requirement for providing performance/price information for enhance-

ment trades? AG.4(2) Y N
6. Do specifications identify new technology tradeoff areas for software? AG.4(3) Y N

7. Do software specifications include requirements for the criteria of the quality factor
expandability? AG.4(4) Y N

1.7 SYSTEM INTERFACES (INTEROPERABILITY, SURVIVABIUTY)

1. Is there a definitive statement of the requirements for communication with other

systems? CL.() Y N
2. Are there specific requirements for network process control? C'.1(5) Y N
3. Are there specific requirements for user session control? CL.AW(6) Y N
4. Are there specific requirements for a communication routing strategy? CL.A(7) Y N

5. Is there a definitive statement of the requirements for standard data representa-
tions for communication with other systems? CL.2(l) YN

6. Are processes and functions separated as logical "wholes" to mmi. %ize interiace complex-

ity? AU.I(l) Y N
7. Are there specific requirements for each CPU/system to have a separate power source?

AU.2(I) Y IN

8. Are there specific requirements for each software scheduling unit to test its own opera-
tion, communication links, memories, and peripherals? AU.2(3) Y N

9. Are there specific requirements for the software system to include a word processing

capability? AU.2(3) Y

10. Are there specific requirements for network communication capabilities in the event

of failure of a node or communication link? RE.l(l) YN

.-.

A- 5

... '-A

"-"-, -"-... ". -".. ,. ........ . .":" '..... . . .,''"-• . .. . ;: ,,:'.-',: ','' ':-, ;



- --. o-°

METRIC WORKSHEET I ISYSTEM. a DATE:

REQUIREMENTS ANALYSIS SYSTEM LEVEL NAME: INSPECTOR:

11. Are there specific requirements for a node to rejoin the network when it has been recov-

ered? RE.ItN) Y N
12. Is there a definitive statement of the operating procedures to be used with this system?

CL.1(15) Y N

13. Is there a low dependency on handshaking time between systems? CL.l(l 1) Y N

14. How many systems must respond correctly to successfully complete handshaking? CL.I100)

1.. Are there no timing dependencies on the system communication response time that effect

system performance requirements? CL.l(l2) Y N

16. Are there no timing dependencies on the freshness of data that effect system performance

requirements? CL.1(14) YN

1. DATA BASE (SURVIVABILITY, USABn, INTEGRITY, EXPANDABILITY, CORRECTNE5

RELIABILITY, MAINTAINABILITY)

I. Is there a definitive statement of the requirements for maintaining data base integrity

under anomalous conditions? RE. 1(2) N

2. Are there specific requirements for file/library accessibility from each node? DI.1(4) Y N

3. Are there specific requirements for a virtual storage structure? VR.l(i) Y N

4. Is there a definitive statement of the requirements for establishing and verifying data

base consistency and concurrency at each node which hosts a data base partition? CS.2(4) Y N

1.9 HUMAN INTERFACE (USABLIrTY, INTEROPERABILITY)

1. Are all steps in the operation described (operations concept)? OP.1(1) Y N

2. Are all error conditions to be reported to operator/user identified and the

responses described? OP.I(2) Y N
3. Is there a statement of the requirement for the capability to interrupt operation,

obtain operational status, save, modify, and continue processing? OP. 1(3) Y N

4. Is there a statement of the requirement for the capability to obtain network resource

status? OP.1(9) Y N

5. Is there a definitive statement of requirements for optional input media? CM.l(6) 7'N
6. !s there a definitive statement of requirements for optional output media? CM.2(7) Y N

N 7. Is there a definitive statement of requirements for selective output control? CM.2(l) Y N
8. Is there a definitive statement of requirements for selection of different nodes for

different types of processing or for different types of information retrieval? OP.l(lO) Y N

A-6



METRIC WORKSHEET I SYSTEM: ,DATE:
REQUIREMENTS ANALYSIS/SYSTEM LEVEL INAME: IINSPECTOR:

9. Is there a definitive statement of requirements for establishing standard user interfaces

for network information and data access? CM.2(8) YN

1.10 COMMON VOCABULARY (INTEROPERABILITY)

1. Do both projects use the same technical vocabulary with identical meanings? CL.3(l) Y N

1.11 DOCUMENTATION (REUSABILITY, INTEROPERABILITY)
A i

I. Is there no access control to the software document? DA.1(l) Y N
2. Are the documents clearly and simply written? DA.2(l) Y N

3. Do the documents contain software flow charts with adequate information and explana-

tion? DA.2(2) Y N
4. Do the documents have hierarchical structured table of contents? DA.2(3) Y N
5. Do the documents have index system? DA.2(4) Y N
6. Do the documents have separate volumes based on function? DA.2(5) Y N

7. Do the documents have functional range of the system? DA.2(6) Y N
8. Do the documents describe the functions performed? DA.2(7) Y N
9. Do the documents describe the algorithm used and limitations? DA.2(8) Y N

%4, 10. Do the documents describe the relationship between functions? DA.2(9) Y N
I. Do the documents contain the software program listing? DA.2(l0) Y N

12. Do the programs have selective computation/output options? DA.3(l) Y N

13. Are the functions performed generally associated with request application? DA.3(0) Y N
14. Is the other system documentation available in a form that is up-to-date, complete and

a. clearly organized? SY.5() I YN

1.12 SECURITY (INTEGRITY)

1. Is there a definitive statement of the requirements for user input/output access con-
trols? SA.(I) Y N

2. Is there a definitive statement of the requirements for data base access controls?
SA.1(2) Y N

3. Is there a definitive statement of the requirements for memory protection across task?

SA.1(3) Y N

A-7._4
.. ... .... ...

"-. .. .. . .. .74..... .. .. . .. .. .
.. . . ..-. .. . .. . . .. . .. . . .. . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .



SWRKSHEET1 I jYSTFM- I ATE:

%

4. Is there a definitive statement of the requirements for recording and reporting access
to system? SA.2(I) *YN

3. Is there a definitive statement of the requirements for immediate indication of access
violation? SA.2(2) Y N

6. Is there a definitive statement of the requirements for network access controls?
* *SA.l1(4) Y N

- .1~ - .

1.13 FUNCTIONAL OVERLAP (INTEROPERABU.ITY)

I . How many functions are duplicated in the systems that are to interoperate? FOAM(l
*2. How many of these duplicated functions will be deleted in one or the other system?

FO. 1(2)

3. How many of these duplicated function pairs will require to be synchronized? FO. 1(3)
4. How many of these duplicated function pairs will require redundancy management logic -

to combine them? F .1(4)

1.14 INSPECTOR'S COMMENTS

Make any general or specific comments that relate to the quality observed while applying tt
checklist.

%'-A

A-8

'-" -"~ ~ A.,()



* *------.-

p..

METRIC WORKHEET 2 SYSTEM: DATE:
.' DF.SGN/SYSTEM LEVEL NAME: INSPECTOR:

'p 2.1 STRUCTURE (RELIABILITY, MAINTAINABILITY, VERIFIABILITY, FLEXIBILITY, REUSABILIT
EXPANDABLITY, SURVIVABILITY, PORTABILITY, INTEROPERABILITY, INTEGRITY, USABILITY,
CORRECTNESS)

I. Is an organization of the system provided which identifies all functions and functional
interfaces in the system? DLI() Y N

2. Is a hierarchy of system identifying all modules in the system provided? Sl.I(l) Y N
3. Are there no duplicate functions or modules? SI. (2) Y N
4. Is an organization of the data base provided which identifies all functional groupings

of data and data flow within the system? DI.I(2) Y N
-. Are there provisions for selecting alternate processing capabilities? DLI() Y N
6. Are critical system functions distributed over redundant elements or nodes? DLI(6) Y N

7. Does the distribution of control functions ensure network operation/integrity under ano-
* . malous conditions? DLI(7) Y N

S. Are logical structure and function separated in the design? DI.1(8) Y N
9. Are physical structure and function separated in the design? DI.1() Y N

10. Number of nodes that can be removed and still have each node able to communicate with
each remaining node. DI.1(10)

1I. Do processes and functions have loose coupling? MO.3(0) Y N
12. What is the cohesion value of processes and functions? MO.3(2)

13. Can each user utilize the system.as though it were dedicated to that-user? VR.l(4) Y N
14. Is the user presented with a complete logical system without regard to physical topology?

" - VR.1(5) Y N
15. Do module descriptions include identification of module interfaces? SL1(9) Y N

%'S *16. Has a programming standard been developed? SLI() YN
17. Number of modules with mixed input/output and computational functions? SC.3(l)
1.. Is the common function not distributed in different modules? SC.3(4) Y N
19. Does the module not perform many (related but different) functions? SC.3(5) YN
20. Number of modules which do not perform single function. MO.2(8)
21. Are the modules hierarchically constructed? MO.2(l) Y N

., 2.2 TOLERANCE (RELIABILITY, SURVIVABILITY)

1. Have accuracy requirements been budgeted to functions? AY.l(6) Y N

A9

S- --- -.- %J

)" . 1

,: ,: - ,. -. - -- - -° -' .-- . . -. . . - - - --- - --.-. -,., ,. .. . , . . . - , . -, . . .- ,. . . - , .- ' - ,. ,



% .% ""

ME"RIC WORKSHEET 2 I SYSTEM: DATE:

DESIGN/SYST M LEVEL NAME: INSPECTOR:

2. Have math library routines to be used been checked for sufficiency with regards to

accuracy requirements? AY.(3) Y N
3. Is concurrent processing centrally controlled? AM.() Y N

4. Is parallel processing centrally controlled? AM.1(4) Y N

5. How many error conditions are reported by the system? AM.l(2)

6. How many of those errors are automatically fixed or bypassed and processing continues?

AM.l(2)

7. How many, require operator intervention? AM. 1(2)
S. Are there provisions for recovery from hardware faults? AM.4(2) YN

, 9. Are there provisions for recovery from device errors? AM.J(2) Y N

10. Are there provisions for recovery from communication errors? AM.6(2) Y N
11. Are there provisions for system recovery from node or communication failures? AM.7(2) Y N

2.3 OPTIMIZATION (EFFICIENCY)

1. Have storage requirements and limitations been allocated to functions? EF.4(l) Y N

2. Are virtual storage facilities used? EF.4(2) Y N
3. Is dynamic memory management used? EF.4(3) YN
4. Is a performance optimizing compiler used? EF.4(7) Y N
5. Have Data Base or files been organized for efficient processing? EF.3(I,5) Y N .

6. Are data base files/libraries stored at only one node? EF.4(8) Y N

7. Is data packing used? EF.2(5) YN
8. Number of overlays EF.2(4)."

9. Overlay efficiency - memory allocation EF.2(4)
max overlay size

min overlay size

10. Has program been segmented for efficient storage? EF.4(4) Y N
1I. Have performance requirements and limitations been allocated to functions? EF.l(l) Y N

2.4 COMPLETENESS (CORRECTNESS)

I. Is there a matrix relating system level requirements to functions which implement those

requirements? TR.1(1) YIN

L1

• "" A-10 ,'4%%

Adel
, ' . .. • -... '- .'-.. " - - -. "." ". . ". ' - '-"-. -. -... . .." '"' - - '' . ' " " . . . 4 "-" " ' .'' . " ' "" .- ' -. - , .

', ~~~ ....... ... .,.4 .....-, ''''.' ,,,'",, ....... ,,.. ' ,.., :.., .,. .



. . . . . . . ....

7.,

MTRIC WORKSHEET 2 sSSTEM: DATE:

J..

-" DESIGN/SySTIEM LEVEL N e:,INSP CTOR: "

2. How many major functions (CPCI°s) are identified? CP. I

3. Are requirements itemized in such a way that the functions to be performed, their

inputs and outputs are clearly delineated? CP.I(I) YN
4. How many functions identified are not defined? CP. "
3. How many defined functions are not used? CP.1(3)
6. How many interfaces between functions are not defined? CP. 1(6)

7. Number of total problem reports recorded? CP.(7)"
S. Number of those reports that have not been closed (resolved)? CP. 1(7)

9. Profile of problem reports: (number of following types)

a. Computational h. Routine/System p. Recurrent errors

b. Logic Interface q. Documentation
c. Input/output i. Tape Processing r. Requirement compliance

d. Data handling j. User interface s. Operator

e. OS/System Support k. Data base interface t. Questions
f. Configuration L User requested u. Hardware
g. Routine/Routine changes v. Network protocol

Interface m. Preset data w. Communication routing

n. Global variable

definition

2.5 REFERENCES (REUSABILITY)

I. Number of modules with database system reference. Al()
2. Number of modules with computer architecture reference. AI.3(l)

3. Number of modules are not in standard computer architecture. AI.3(2)
4. Number of modules used microcode instruction statements. AI.4(I)
5. Number of modules used the table driven algorithm. Al.5(2)

2.6 CHANGEABILITY (FLEXIBILITY, REUSABrLITY, EXPANDABILTY, INTEROPERABuLTY)

1. Percent of memory capacity uncommitted. -NG.1(2)

2. Percent of auxiliary storage capacity uncommitted. AG. 1(3)

3. Percent of speed capacity uncommitted. AG.2(3)

A...

.. _ ..,'.

----..~ %- -



RKiEE 2 : !SS M DATE

, 

.,

ISYSTEM V L NAME: INSPECTOR:

4. Spare I/O channel capacity. AG.3(l)
5. Spare communication channel capacity. AG.3(2)

6. Are processors, communication links, memory devices, and peripherals compatible

(of a common vendor or model)? AG.(I) Y N

7. Does documentation reveal performance/price of software/system for enhancement trades?

AG.46(2) Y N
8. Do specifications identify new technology tradeoff areas for software? AG•4(3) Y N

9. Do software specifications include requirements for the criteria of the quality factor

expandability. AG.4(4) Y N
10. Based on hierarchy or a call/called matrix, how many modules are called by more than

one module? GE.l()-

II. Number of modules. GE.L(l)

-7 SYSTEM INTERFACES (UNTEROPERABIUITY, SURVIVABILTY)

1. How many nodes will this network/system interface with? CL.i(l)

2. Have protocol standards been established for network process control? CL.1(2) Y N

3. Have protocol standards been established for user session control? CL. I(S) Y N S

4. Have protocol standards been established for communication routing? CL.I(9) Y N

5. Are they being complied with? CL.1(2) Y N
"- 6. Number of modules used for input to other systems? CL.l(3)

7. Number of modules used for output to other systems? CL.l(4)

8. Has a standard data representation been established or translation standards
:between representations been established? Are they being compiled with? CL.2(2) Y N

9. Number of modules used to perform translations? CL.2(3)

10. Is configuration of communication links such that failure of one node/link will not
disable communication among other nodes? RE. 1() Y N

1,. Can node rejoin the network when it has been recovered? RE.1(4) Y N
12. Is data replicated at two or more distinct nodes? RE. l() Y N

13. Are processes and functions separated as logical ' wholes" to minimize interface complex-
ity? AU.l(l) YIN

14. Estimated number of lines of interface code. AU.l(2)
15. Estimated number of interface modules. AU.1(3)

A-12

...... . . -.. ... ................. ...... ......

-v""". ' . ":. ." "". . " " , ,.''..4' .. ..' " . -4" "."""" " """""" "" " - " ' " "" "' 4 """" """ .' "



L°.-

ETI (RKSHMEET 2 ISYSTEM: DATL ':

-DEIGN/SYSTEM LEVEL , NAME: INSPECTOR:

16. Estimated time engaged in communication. AU.()- -

17. Does each CPU/system have a separate power source? AU.2() Y N

18. Does each scheduling unit test its own operation, communication links, memories, and
'." peripherals? AU.2(2) Y N

19. Does the software system include a word-processing capability? AU.2(3) Y N
, 20. How many other systems will this system interface with? CL.l(13)

2.1 DATA BASE (RELIABILITY, MAINTAINABILITY, VERIFIABILITY, FLEXIBILITY, REUSABILT"
EXPANDABILITY, USABILITY, INTEGRITY, SURVIVABILITY, CORRECTNESS)

I. Number of unique data items in data base SIA(6)

. 2. Number of preset data items SI.I(6)
3. Number of major segments (files) in data base 51.1(7)
4. Is the data base structured so that at least one copy of a file/library resides at a node

which is accessible to all other nodes? DI.(4) Y N
5. Is the data base structured so that users need not care about changes in the actual

storage structure of data? VR.l(IM Y N
6. Are there provisions for maintaining data base integrity under anomalous conditions? RE.l(3) Y N
7. Can users manipulate data as if it were not replicated elsewhere in the system? VR.l(3) Y N
S. Have procedures been established for verifying data base consistency and concurrency

at each node which hosts a data base partition? .CS.2(0) YN
9. Are ill data centrally controlled and symbolically defined and referenced? AI.2(3) Y N

* 2.9 HUMAN INTERFACE (USABILITY, INTEROpERAB.LTY)

I. Are all steps in operation described including alternative flows? OP.l(l) YN
2. Number of operator actions? OP.1(4)
3. Estimated or Actual time to perform? OP.I()
4. Budgeted time for complete job? OP.l1(4)
3. Are job set up and tear down procedures described? OP.1(5) Y N
6. Is a hard copy of operator interactions to be maintained? OP.1(6) Y N
7. Number of operator messages and responses? OP.l(7)
8. Number of different formats? OP.I(7)
9. Are all error conditions and responses appropriately described? OP.1(2) Y N

.-" 10. Are all access violations and responses appropriately described? OP.l(8) YIN

A-13

'...... .............. ,................................................ ..
" . q , ' ,P . . ., . ..- . .. ,* " . ... . . .. -



METRIC WORKSHEET 2 SYSTEM: DATE:

DE S YSTEM LEVEL NAME: INSPECTOR: -..

1I. Does the capability exist for the operator to interrupt, obtain status, save,

modify, and continue processing? OP.l(3) Y N
12. Does the capability exist for the operator to obtain network resource status. OP.I(9) Y N

13. Can different nodes be selected for different types of processing or for different

types of information retrieval? OP.l(l0) YN

14. Are lesson plans/training materials for operators, end users, and maintainers

provided? TN.i(I) YIN

1,. Are realistic, simulated exercises provided? TN.l(2) Y N

16. Are help and diagnostic information available? TN.1(3) Y N

17. Number of different input record formats CM.1(2)

* 18. Number of input values CM.l(3)

19. Number of default values CM.I(l)
20. Total number of parameters CM.I(I)

21. Number of self-identifying input values CM.l(3)

22. Can input be verified by user prior to execution? CM.l() Y N

23. Is input terminated by explicitly defined by logical end of input? CM.I(5) Y N
24. Can input be specified from different media? CM.l(6) Y N

" 25. Are there selective output controls? CM.2(l) Y N

26. Do outputs have unique descriptive user oriented labels? CM.2(2) Y N
27. Do outputs have user oriented units? CM.2(3) Y N

* 28. Number of different output forrrfats? CM.2(4)

- 29. Are logical groups of output separated for user examination? CM.2(5) Y N

30. Are relationships between error messages and outputs unambiguous? CM.2(6) Y N

31. Are there provisions for directing output to different media? CM.2(7) Y N

32. Are there standards governing the user interface for network information and data e

access? CM.2(8) Y N
33. Are the standards being comlied with? CM.2(8) Y N

- 34. Are there selectable levels of aid and guidance for users of different degrees of expertise?

TN. 1(4) Y N

2.10 TESTING (USABILITY, MAINTAINABILITY, VERIPLMBILITY)-APPLY TO TEST PLAN, PROCEDURE:

RESULTS

" I. Number of paths? VS.l(L)
2. Number of paths to be tested? VSl(I)

A-1 4



.ESIGN/SYSTEM LEVEL INAME: IINSPECTOR:

3. Number of input parameters? VS. IM2
4. Number of input parameters to be tested? VS.I(2)
3. Number of interfaces? VS.2(l)
6. Number of interfaces to be tested? VS.2(I)
7. Number of itemized performance requirements? VS.Z(2)
8. Number of performance requirements to be verified? VS.2(2)
9. Number of modules? VS.3(l)

10. Number of modules to be exercised. VS.3(j)
11. Are test inputs and outputs provided in summary form? VS.3(2)YN

2.11 SYSTEM COMPATIBELITY (NNROPERABMI

I. Same 1/0 transmission rates in both systems? SY.lIl) Y N1
2. Same communication protocol in both Systems? SY.IM YN
3. Same message content in both systems? SY.(3) YN
4. Same message structure and sequence in both systems? SY.l(IM Y N
5. Is data in both systems in the same format (ASCII, EBCDIC....)? SY.2(1) Y N
6. Same data base structure in both systems? SY.2(2) YN
7. Same data base access techniques in both systems? SY.2(3) Y N
8. Same source language in both systems? SY.l) Y N
9. Same operating system in both systems? SY.4(2) Y"N

10. Same support software in both systems? Y.4(3) YN
11. Same word length in both systems? SY.3VS) YN
12. Same interrupt structure in both systems? SY.3(2) Y N
13. Same instruction set in both systems? SY.3(3)

2.12 SECUP~fTY (ITEGRITY

I. Are user Input/Output access controls provided? SAl YN
2. Are Data Base access controls provided? SA.(2) YN
3. Is memory protection across tasks provided? SA. 10) Y N
4. Are there provisions for recording and reporting access to system? SA.2(l) Y N
5. Are network access controls provided? SA.() Y N
6. Are there provisions for immediate indication of access violation? SA.2(2) Y N

A-i5

.......... .. .. .. ..................



2K;FF I SYSTEM* I DATE:
TFM FVE Jr4ME.INSPECTOR:

2.13 INSPMCTOR'S COMMENTS

Make any general or specifiC comments about the quality observed while applying this checklist.

A-i16

........................



METRIC WORKSHEET 3 ,Y MJNAME: -:1 TE:
DESIGN/MODULE LEVEL IMODULE NAME: IINSPECTOR:

3.1 STRUCTURE (REIABILITY, MAINTAINABIUTY, VERIFIABILITY, FLEXIBILITY, REUSABILI

EXPANDABILITY, CORRECTNESS, PORTABILITY, INTEROPERABILITY, SURVIVABILITY)

I. Is an organization of the system provided which identifies all modules and module inter-
- faces? Dl.I(l) YN
S"2. Is an organization of the data base provided which identifies all data base modules and

- module interfaces? DI.I(2) YN
3. How many decision points are there? 51.3(1)

4. How many subdecision points are there? SI.3(l)
5. How many conditional branches are there? 51.3(0)
6. How many unconditional branches are there? SI.3(1)

7. Is the module dependent on the source of the input or the destination of the output? SI.A(3) Y N
8. Is the module dependent on knowledge of prior processing 51.1(3) Y N
9. Number of entrances into modules SI.l(5)

10. Number of exits from module SI.I(5)
11. Does the module description include input, output, processing, and limitations? SI.l(4) Y
12. Is code written according to a programming standard? 51.4(13) .-N

13. Are macros and subroutines used to avoid repeated and redundant code? SI.4(14) Y N
14. Number of input parameters. SP.1(I)

15. Number of output values used. SP.l(2)

16. Number of output parameters. SP.A(2)
17. Can the same function not be accomplished by multiple variant forms? SP.1(3) YN
18. Does each function and module have loose coupling? MO.3(I) Y N
19. What is the cohesion value of each function and module? MO.3(2)
20. Do module descriptions include identification of module interfaces? SI.l(9) Y N
21. Is module designed in top down fashion? S1.I( YN
22. Number of functions performed. F5.1(0)

3.2 TOLERANCE (RELIABILITY, SURVIVABILITY)

i. When an error condition is detected, is it passed to calling module? AM. 13) Y N
* - 2. Have numerical techniques being used in algorithm been analyzed with regards to accuiracy

requirements? AY.l(4) Y N
3. Are values of inputs range tested? AM.2(2) Y N
4. Are conflicting requests and illegal combinations identified and checked? AM.2(3) Y N

*8,

A-17

-. " A



,'D-il37 956 SOFTWARE QUALITY MEASUREMENT FOR DISTRIBUTED SYSTEMS 2/3-
VOLUME 2 GIDEBOOKF. F U) BOEING AROSP ACE CO SEATTLE

WAi T PBOWEN ETAL JLB8 RA[C F TR81-7 _ U

UNCLASSIFIED F3@602-60-C B B0 F/ 9/2 N

EllIIhlllllII
IIIE~lEEIhEllE
EhllllIElllhEE
EllllEEEElhllE
EllhlllEllI~lE
lllllEEEElIIEE

llllllllllloll



.i..-

136

iIIIII -I s. H 2

MICROCOPY RESOLUTION TEST CHART
NATi)NAL BUREAU OF STANDARDS-19I63-A % .

.%L_

.1 .5

1.0.

l u .6

-.-,- *%*** ..*. ,....,
ill .

r _ -:, :. :,;,. . , -,-.- . . ,... ..... ,..,. . .. -_ . ...,..,..



-0; T-.7., .. , r. ..-... -...

V - -

,, D '.NIMODUE .. LEVEL MODUL& NAME: IMSPECTORI .'''.

5. Is there a check to see if all necessary data is available before processing begins? AM.2(0) Y N
6. Is ali input checked, reporting all errors, before processing begins? AM.2(4) Y N

7. Are loop and multiple transfer index parameters range tested before use? AM.3(2) Y N t..

L Are subscripts range tested before use? AM.3(3) Y N

9. Are outputs checked for reasonableness before processing continues? AM.3(4) Y N

10. Are checksums computed and transmitted with all messages? AM.6() Y N

1 . Are checksums computed and compared upon message reception? AM.6{4) Y N

12. Are the number of transmission retries Limited? AM.6() Y N

13. Are adjacent nodes checked periodically for operational status? AM.7(3) Y N

14. Are there alternate strategies for message routing? AM.7(4) Y N

13. Have accuracy requirements been budgeted to modules? AY.l(6) Y N

3.3 OPTIMIZATION (EFFICENCY)

I. Are specific performance requirements (storage and routine) allocated to this module?

2 EF. t n) YIN

2. Which category does processing fail in: EF.2
Real-time
On-line

Time-constrained

Non-time critical

3. How many loops have non-loop dependent statements? EF.2(l) -- ,...,..

4. is bit/byte packing/unpacking performed in loops? EF.2(0) YIN

3. Is data indexed or reference efficiently? EF.3(5) YIN

6. Is performance optimizing compiler/assembly language used? EF.2(2) Y N

3.4 COMPLETENESS (CORRECTNESS)

I . Is there a matrix relating functional requirements to the module which implements ",

those requirements? TR.l(l)

2. Can you clearly distinguish inputs, outputs, and the function being peformed? CP.() N

3. How many data references are not defined, computed, or obtained from an external

source? CP.1(2)

4. Are all conditions and processing defined for each decision point? CP.1(3) V N

3. How many problem reports have been recorded for this module? CP.l(7)

A-18 ,..
r e

-. ..

' - ' * , " ,  - °  , " °o " " ' ° "" . . . . .. "° " " "" "" " N '

. ... ".); " " " " " ". '. -. '- '. " " '. .. " " " , .''.-. -..." " .". " '"." ".. .. .' .' . " '. "" "" ' ."", ". ..'" .''..''. '

.;,,J ' ,% _,'(.,' % ,= .'.% ... ,., ... ... .. .. - , ... ,.., ....,- ...-.. ... . .. ,, ... . ... • ., .,.... .,. . -. . . . .
, ,-""'-' :"r . ,"" ."""". " . .""- "". ". "".," ..-.' ..- -. .". , -" - " .... ' '' ..- " . .-'. ,

*0''.;,., ., ,., ',', , .:. ... , .'.% % . .. ".':"., ;".,. . , "-.". . ""' '.v ,"> . - .- : . . ':"."



METRC 1ORK~ HET 3SYSTEM NAME, DA TEi -ULE LEVEL MODULE NAME. ISPECTOR" -

,%0L
6. Number of problem reports still outstanding CP.I(

7. Profile of Problem Reports: (Number of Following Types)

a. Computational h. Routine/System Inter- p. Recurrent Errors

b. Logic face q. Documentation
c. Input/Output i. Tape Processing r. Requirement Compliance

d. Data Handling j. User Interface s. Operator

e. System/OS Support k. Data Base Interface t. Questions

f. Configuration 1. User Requested Changes u. Hardware
g. Routine/Routine Inter- m. Preset Data v. Network Protocol

n. Global Variable Definition w. Communication Routing

3M REMREN (MAZNTAMDABILITY, FLOE ILY, VERUWI Y, PORTA511M, REUSABIL
INTEROPERABiUTY, EXPANDABILTY, SURVVAULITY).

1. Number of references to system library routines, utilities or other system provided facilities

I.I

2. Is a common, standard subset of programming language to be used? ID.I(2) Y N %

3. Is the programming language available in other machines? ID.2(l) Y N
4. Number of input/output actions. ID.2(2)
3. Number of calling sequence parameters MO.2(3)
6. How many calling sequence parameters are control variables? MO.()
7. Is input passed as calling sequence parameters MO.2() YN

S. Is output passed back to calling module? MO.2(,) YN
9. Is control returned to calling module? MO.2(6) Y N

10. Is temporary storage not shared with other modules? MO.2(7) Y N
11. Does the module associate with database system? AI.(l) YN

12. Number of the domains in system Al.(l)
13. Number of the domains algorithm works for in system AIJ()
I. Is the algorithm certification available? AIJ(3) YN
13. Is the algorithm test data available? AI.() YN

.4..

A-19

... .. .. ... .. .. .. ..................... .. ...
%•% ."% %... . ... . . . ....... ..-..%, % % .. , , ,,,,,."..".".".." '.'." " ".". .,, ,", ...'..'-"-" " 1



-. 4".-

% "

MRT.IC 1ORKSHEET 3 I SYSTM NAMDAT
.ESINMODU LEVEL MODULE NAMIP .

A . OIANGEASL Y FILEXiUJTY, REUABILITY, EXPANDA BILTY, IKTERO.NAB I

1. Is logical processing independent of storage specification? AG.l(l) Y NJ

2. Percent of memory allocation uncommitted. AG.l(2) ,o.

3. Are accuracy, convergence, or timing attributes and limitations parametric? AG.2(l) YN

4. Is module table driven? AG.2(2) YN
5. Percent of cycle time allocation uncommitted. AG.2(3)

6. I/0 channel time allocation uncommitted. AG.3()
7. Communication channel time allocation uncommitted. AG.(2)
L. Does the module not mix input, output and processing functions in same module?

GE.2(U)
9. Number of machine dependent functions performed? GE.2(2)

10. Is processing not data volume limited? GE.2(3) Y N

11. Is processing not data value limited? GE.2(4) Y N

3." SYSTEM IrACES (SURVIVABILrTY)

I . Estimated lines of interface code. AU. 1(2)

2. Estimated lines of source code. AU.1(2)

3. Estimated number of interface modules. AU.l(3)
4. Estimated time engaged in commuication. AU.1(4)

3,, CONIS111MY (CORRECMSS, RELIA uL"Y, MAINTA rUR )

I. Does the design representation comply with established standards CS.l(l) N N
2. Do input/output references comply with established standards CS.l(3) Y N

3. Do calling sequences comply with established standards CS.L(2) Y N
4. Is error handling done according to established standards CS.1(#) Y N

. Are variables named according to established standards CS.2(2) Y N

6. Are global variables used as defined globally CS.2(3) yN
7. Does the data usage representation comply with established standards? CS.2(l) Y N

.4

,

A-20
4 .... :-:...>

%%

- -..- f%



". F. C MOUU, LEVEL MODULE NAME M!SPECTOR:-

3.9 FUN*CTIONAL. CATEGORIYATION -''-

Catege riz function performed by this module according to following:
CONTROL - an executive module whose prime function is to invoke other modules.
INPUT/OUTPUT - a module whose prime function is to communicate data between the

computer and either the user or another computer.
PRE/POSTPROCESSOR - a module whose prime function is to prepare data for or after

the invocation of a computation or data management module.
ALGORITHM - a module whose prime function is computation.
DATA MANAGEMENT - a module whose prime function is to control the flow of data

'" within the computer.

SYSTEM - a module whose function is the scheduling of system resources for other modules.

COMMUNICATION - a module whose prime function is to manage messasge routing between nodes.
NETWORK MANAGEMENT - a module whose prime function is to monitor and

'A control network-level resources. s.i

- 3.10 INSPECTOI'S COMMENTS 7

Make any specific or geneal comns about the quality observed while applying this checklist. -

L ,1

=]

A-21

.. *~ .. . .. .. . .F . . ....-

%%* .



..

4.,.

.p r tPPT a SySl M NAMEi DATEt

SOURCE O D .. ULZ_ LEVEL MODULE NAME: INSPEC'TORS V ..

41 SThUCTU (iEUABILITY, MAINlTADIABULJTY, VERnF ITY, FLXDILITY, PORTABLIT

RIUSABILITY, EX)PANDABILITY, CORRECTNESS) ".

1. Number of lines excluding comments SL4(2)

2. Number of declarative statements SL4(9)

3. Number of data manipulation statements SL6(9)

4. Number of statement labels (Do not count format statements SI(6)""

3. Number of entrances into module SLI()

6. Number of exits from module SLI()

7. Maximum nesting level SL4(7)

L Number of decision points (IF, WHILE, REPEAT, DO, CASE) SL(l)

9. Number of sub-decision points. 51.3(1)

10. Number of conditional branches (computed go to) SL4(8)

11. Number of unconditional branches (GOTO, ESCAPE) SL4(S)

12. Number of loops (WHILE, DO) SL(0,4)

13. Number of loops with jumps out of loop SL4(3)

14. Number of loop indices that are modified SL4(#)

13. Number of constructs that perform module modifications (SWITCH, ALTER) SL4(5) (Also

see 4.3, MO.2(2))

16. Number of negative or complicated compound boolean expressions SL#(2)

17. Is a structured language used 5L2(,) Y N

I 1L Is flow top to bottom (are there no backward branching GOTOs) SL4(l) Y N

19. Is code written according to a programming standard? SL4(13) Y N

20. Are macros and subroutines used to avoid repeated and redundant code? SL4(14) Y N

21. Number of data items used to specify the interface. SC.l()

22. Number of data items passed implicitly across interface via common global data without

adequate comments. SC.(2)
23. Number of nesting levels in interface. SC.l(3) 4..

24. Number of interface data items with negative qualification. SC.1(4)

23. Number of data items passed across module interface. SC.1(5)

26. Does the module have comments about the common control blocks, common data blocks
4e

and global variable names in module interface? SC.1(6) YN
27. Does the module modify other modules? SC.1(7) YN

2. Number of possible unique execution paths. SC.2(0)

A-22

% % %"%,%

% % %; . " . " " . " t t " ." ' . ° . ' ," . " " . . " , r' o , • -. , ." . , ,.

• ; " *.";"",'" '.' ;' "'.""r .'. .""" " -" " #' ," " " "' " ,'" . f~ ."," ,"€ "" . " , "%. ,""""%".



r MEM WisT SYSTEM NAMt_ MAM

2t. Number of IF statements. SC.2(2)
30. Number of function CALLs. SC.23)

31. Number of control variables used to direct execution path selection. SC.2(4)

32. Number of DO groups. SC.2(3)

33. Does the module have code comments about calling what modules and called by what

modules? SC.2(6) Y N

34. Does the module share temporary storage with other mondw es? SC.3(2) Y N

35. Does the module have mixed dastabase-management and storage-management routines?
SC 3(3) Y N

36. Average number of formal parameters in each routine. SC.A(l)

37. Average number of common global variables used in each module. SC.4(2)

33. Number of global variables modified by one routine and referenced by another routines.

SC.(3)-
39. Does the module connect to other modules with functional name? SC.4(4) Y N
40. Does the module communicate with other modules, by passing control elements? SC.W() Y N

41. Number of machine level language statements. AI.X3)

42. -e s the module with logical processing depend on data storage specification and re-
quirement? AI.2() -Y

43. Does the program compu the same value more than once? SCJ() N
$4. Does the program insert a statement which oever needs to be executed? SC.M2) Y N

45. Does the program maintain a constant meaning for each variable? SC.3) Y N
4 Does the program use the mnecissary intermediate variables? SC.(4T Y N

s~. 4.2 TOLE3ANCE OUELIAOLITY, SURYIVABULIT

I. Are loop and multiple transfer index parameters range tested before use?

AM.X2) Y N

2. Are subscript values range tested before use? AM.X3) Y N

3. When an error condition occurs, is it pawed to the calling module? AM.1(3) Y N

4. Are the results of a computation checked before outputting or before processing continues?
AM.X4) Y N

4. -*-

4%



4 K ^ V .- :q.W7-6 .

3Ttle ORSHRIFT 4L I WYCTIM NAM&t DAE

1. Number of mix m ode expressions? EF.3(3)
2. H~ow many variables art Initialized when declared? EF.3(2)

3. Now many loop hve non-loop dependent statements in them? EF.2(1)

7. How in dctapoued esparamio ete ne? more(~ thnonN

I. Nsout dot opatos ba o alingmdlM.()Y
3. Nus conto rerndst call oue O2)

INTROPRASM, XP NRTRSUERVALTY RUASM f

.2. proco efrne o ytmlbrr otneu~esd or Nte ye mi ucin

3-~~~ Nube of. caln euec.aaetr 0

7. Isiptdt asdasprmtr 024

L I otpu dtapasedbad t cllig odueA-20

9.4 Isc nrlrgu o ociln o ue.M.()Y



I. k• %

".,.3. Are *ame any limits to amounts of data that can be processed? GE..2(0) Y N :
' 4. Are acduracy, converingo and timing attributes parametric? AG.2(0) Y' N"..

5. -Amount ofmemoryused. AG. 1(2) "

'P-4

6. Does the module allow for modifying resource utilization? DA3(2) Y N

7. Dres the module have comments about functional descriptions? FS.I(2) Y N

S. Does the module have comments about algorithm descriptions? A.J(S) Y N
C. A9. Does the module have the selected computation or output features? DA.3(1) YN

j 2PUT/OUTPtJT (RELIABILITY, PORTABILITY, REUSABILITY, SURVIVABILIT
METEROPERABD.rr-

1. Number of input statments ID.2(2)

2. Number of output statements ID.2(2)
3. Are inputs range-tested (for inputs via calling sequences, global data, and input statements)

AM.2(2) Y N
4. Are possible conflicts or illegal combinations in inputs checked?. AM.2(3) Y N
5. Is there a check to determine if all data is available prior to processing? AM.2() Y N
6. Is all input checked, reporting all errors, before processing begins? AM.2(4) Y I N

7. Number of lines of interface code. AU.I(2)

8. Number of modules with interface code. AU.l(3)
9. Are the input/output formats welk defined? FS.2(3) YN

4.8 SEL-DESCRPTIVENESS (MAINTAINABILITY, FLEX3ILITY, YEZRIBILITY, PORTABLIT'

REUSABILITY)

1. Number of lines of source code SD.l1(l)
2. Number of non-blank lines of comments SD.l(l)
3. Are there prologue comments provided containing information about the function, author,

version number, date, inputs, outputs, assumptions and limitations? SD.2([) Y N
4. Is there a comment which indicates what itemized requirement is satisfied by this module?

SD.2(D Y
3. How many decision points and transfers of control are not commented? SD.23)
6. Is all machine language code commented? SD.2() Y N
7. Are non-standard HOL statements commented? SD.2(5) YN

S. How many declared variables are not described by comments? SD.2(6)

A-25

::e - 26 .-.......... •......."..



S ERIC WORKSHEET (4 [SYSE NAMEx IDATE:-

9. Are variable names (Mnemonics) descriptive of the physical or functional property they
represent? 50.X2) YNI10. Do the comments do more than repeat the operation? 50.2(7 Y N

11. hs the code logically blocked and indented? 50.3(3) Y
12. Number of lines with more than I statement. 50.3(4)
13. Number of continuation lines. S0.3(4
14. Are comments set off from code in a uniform manner? SD.2(2) Y N
13. Is this module free of machine level language statements? 503(1 (Also see 4. 1, AI.303)) -Y N
16. Is the module in the standard format organization? SO.3() YN

17. Does the module use the language keywords? S0.3%) Y N

'.9-' 
"

S DATA (CORRECThESS RELIABILITY, MAINTAINABILITY, VERIFIAILITY, EMFCME4C
-I PFLEXIBILITY, REUSABILITY, EXPANDABR.ITY

1. Number of local variables 5aIs10)

2. Number of global variables 5.4(1 0)

3. Number of global variables renamed EF.4(3
4. How many variables are used for more than one purpose? C5.2()

5. Number of executabie statements. . -)

6. Number of variables used? 5L4( i)
7. Does each variable have single use? S1.012) YN

S. Number of occurrences of uncommon unit operations EF.3W4
9. Does the module have comments about input data value range and their default

conditions? SWI2M1 Y N
10. Does the module have the code comments about data items used? ALY N 

* II. How many data items are described parametrically? A1.20l)
* 12. How many data items could be described parametrically? AI.2(l)

13. Does each module have comments about global, local parameter variables? AI.2(2) Y N

410 IPENDENCE (PORTABILITY, REUSABILITY, NTROPERAB.IY

1. Is code independent of word and character size? 0.2)

2. Is a common, standard subset of programming language used? ID. 1(2)

3. Is data representation machine independent? s.2( ) N

A- 26

% . .. . . . .



4 --. . .

....

I -- I

WThIC WORKSHEET 6 ISYSTEM NAMe: ATE:
"-:" IJ E CI3FJWOULF LEVEL IMODULE NAME' INSPECTOR, r

4611 DYNAMIC MEASUREMENTS 0IIENCY, RELIABILITY, FLEXIBILITY, EXPANDABIL-
ITY, SURVIVABILITY)

I. During execution are outputs within accuracy tolerances? AY.1(0) Y N

2. During module/developrmt testing, what was run time? AG.2(3)
3. Complete memory map for execution of this module EFA.()

Size (words of memory)
APPLICATION

SYSTEM
DATA

OTHER
a. During execution how many data items were referenced but not modified? EF.3(6)
5. During execution how many data items were modified? EF.3(7)
6. Amount of 1/0 channel capacity used. AG.3(l)
7. Amount of communication channel capacity used. AG.3(2)
S. Time engaged in communication. AU.l()
9. Module linkage time EF.2(6)

* 10. Module execution time EF.2(6)

II. O linkage time EF.2(7)
12. O execution time EF.2(7)

4612 RINwECTOR COMENTS 4

Make any general or specific comments that relate to the quality observed while applying this checklist.

A-27-

%4 %

9,.,-
4-' A-2 7.?r:

4%e . ... ". .. . ,..,........ .. .. ... _..'. .'.'.. . .. . ... -. ',-;-."..., .,...,. .. ". ' ,.,... .

:~~~~~~~~~~~....-.-..- '...,....---.....:...-:-.-.-..-...-...-.......-.........-.-...............- .. . -. .. ,-. .-..-



APPENDIX B

METRIC TABLES

Appendix B contains the metric tables which are used for calculating values for
metrics and metric elements. The tables are organized alphabetically by quality
criteria name and numerically by metric acronym. A summary of the metric tables
and a correlation to metric worksheets are shown on the xt several pages.

Each metric table identifies the quality criteria, the *.etric, and the metric element
-'.)and references the applicable quality factors. Form are stated, where appropriate,

*to calculate values for metric elements and for m - . Each metric element is
cross-referenced to the software development phase during which it is applicable and
to the appropriate worksheet and worksheet section(s) (see Appendix A, Metric Work-

* 1~~~ sheets). The worksheet cross-reference is by a decimal number scheme. If, for
* example, 1.2 is called out, this refers to Metric Worksheet 1, Section 2. A cross-

. reference enclosed in parentheses indicates a reapplication of the metric element
during a subsequent development phase.

Each metric in the tables is identified by a type code: an (a) following the metric
name identifies an anomaly detecting metric, and a (p) identifies a predictive metric.
If a normalization function has been established for a quality factor but the metric is
not included, it is because the metric did not illustrate sufficient correlation with the
operational history. In lieu of inclusion in the normalization function, some metrics
are maintained as strictly anomaly-detecting metrics; they are felt to identify or assist
in identification of problems which should be and are typically corrected immediately
to enhance the quality of the product.

The contents of this appendix are based on the results of this contract, "Quality
Metrics for Distributed Systems", F30602-80-C-0330 and the results of contract
F30603-80-C-0265, "Software Interoperability and Reusability". This appendix includes
a refinement and reorganization of metric table information initially defined in
RADC-TR-77-369 and RADC-TR-80-109.

B-1



, , ,., -,.'.. .,- .- ,, _ 1 . - .,-,. . * . *2... . . .. . . .. . . . . . --... . . . :

METRIC TABLES SUMMARY

CRITERIA ACRONYM METRICS

- ACCURACY AY.I ACCURACY CHECKLIST

ANOMALY MANAGEMENT AM.I ERROR TOLERANCE/CONTROL CHECK-
LIST

AM.2 IMPROPER INPUT DATA CHECKLIST
AM.3 COMPUTATIONAL FAILURES CHECKLIST
AM.4 HARDWARE FAULTS CHECKLIST
AM.5 DEVICE ERRORS CHECKLIST
AM.6 COMMUNICATION ERRORS CHECKLIST
AM.7 NODE/COMMUNICATIONS FAILURES

CHECKLIST

APPLICATION
INDEPENDENCE ALI DATA BASE SYSTEM INDEPENDENCE

SA1.2 DATA STRUCTURE
: AI.3 ARCHITECTURE STANDARDIZATION

A1.4 MICROCODE INDEPENDENCE
A1.5 ALGORITHM

AUGMENTABILITY AG.I r)ATA STORAGE EXPANSION MEASURE
AG.2 COMPUTATION EXTENSIBILITY MEASURE
AG.3 CHANNEL EXTENSIBILITY MEASURE
AG.4 DESIGN EXTENSIBILITY CHECKLIST

AUTONOMY AU.1 INTERFACE COMPLEXITY MEASURE
AU.2 SELF-SUFFICIENCY CHECKLIST

COMMONALITY CL.f COMMUNICATIONS COMMONALITY
CHECKLIST

CL.2 DATA COMMONALITY CHECKLIST
CL.3 COMMON VOCABULARY CHECKLIST

•- COMMUNICATIVENESS CM.I USER INPUT INTERFACE MEASURE

CM.; USER OUTPUT INTERFACE MEASURE

COMPLETENESS CP. I COMPLETENESS CHECKLIST

CONCISENESS CO.I HALSTEAD'S MEASURE

CONSISTENCY CS.1 PROCEDURE CONSISTENCY MEASURE
CS.2 DATA CONSISTENCY MEASURE

DISTRIBUTEDNESS DI.1 DESIGN STRUCTURE CHECKLIST

DOCUMENT ACCESSIBILITY DA. I ACCESS NO-CONTROL
DA.2 WELL-STRUCTURED DOCUMENTATION
DA.3 SELECTIVE USABILITY

B-2

''- .- - -, --- , -- .'. * *-,- . .-. .. .. . .. .. - .. ... ". .-. ."'. .. '.-. '



METRIC TABLES SUMMARY

CRITERIA ACRONYM METRICS

EFFECTIVENESS EF.1 PERFORMANCE REQUIREMENTS
EF.2 ITERATIVE PROCESSING EFFICIENCY

MEASURE
EF.3 DATA USAGE EFFICIENCY MEASURE

EF.4 STORAGE EFFICIENCY MEASURE
FUNCTIONAL OVERLAP FO.I FUNCTIONAL OVERLAP MEASURE

FUNCTIONAL SCOPE FS.1 FUNCTION SPECIFICITY
FS.2 FUNCTION COMMONALITY
FS.3 FUNCTION COMPLETENESS

GENERALITY GE.I MODULE REFERENCE BY OTHER MOD-
ULES

GE.2 IMPLEMENTATION FOR GENERALITY
-_ __ _ __ _ __ _ CHECKLIST

INDEPENDENCE ID.I SOFTWARE SYSTEM INDEPENDENCE MEA-
SURE

ID.2 MACHINE INDEPENDENCE MEASURE

MODULARITY MO.2 MODULAR IMPLEMENTATION MEASURE
MO.3 MODULAR DESIGN MEASURE

" OPERABILITY OP.1 OPERABILITY CHECKLIST

RECONFIGURABILITY RE.I RESTRUCTURE CHECKLIST

SELF-DESCRIPTIVENESS SD.I QUANTITY OF COMMENTS
SD.2 EFFECTIVENESS OF COMMENTS MEASURE
SD.3 DESCRIPTIVENESS OF LANGUAGE MEAS-

__-_ _ __ _URE

V SIMPLICITY S1.1 DESIGN STRUCTURE MEASURE
51.2 STRUCTURED LANGUAGE OR PRE-

PROCESSOR
SI.3 DATA AND CONTROL FLOW COMPLEXITY

MEASURE
SI.4 CODING SIMPLICITY MEASURE

SPECIFICITY SPA1 SCOPE OF FUNCTION MEASURE)

* -*.SYSTEM ACCESSIBILITY SA.1 ACCESS CONTROL CHECKLIST
SA.2 ACCESS AUDIT CHECKLIST

I

* ,,, B-3

< .,



METRIC TABLES SUMMARY

CRITERIA ACRONYM METRICS

SYSTEM CLARITY SC.I INTERFACE COMPLEXITY
SC.2 PROGRAM FLOW COMPLEXITY
SC.3 APPLICATION FUNCTIONAL COMPLEXITY
SC.. COMMUNICATION COMPLEXITY
SC.5 STRUCTURE CLARITY

SYSTEM COMPATIBILITY SY.1 COMMUNICATION COMPATIBILITY
CHECKLIST

SY.2 DATA COMPATIBILITY CHECKLIST
SY.3 HARDWARE COMPATIBILITY CHECKLIST
SY. SOFTWARE COMPATIBILITY CHECKLIST
SY.5 DOCUMENTATION FOR OTHER SYSTEM

TRACEABILITY TR.I CROSS REFERENCE

TRAINING TN.I TRAINING CHECKLIST

VIRTUALITY VR.I SYSTEM/DATA INDEPENDENCE CHECK-
LIST

VISIBILITY VS.I MODULE TESTING MEASURE
VS.2 INTEGRATION TESTING MEASURE
VS.3 SYSTEM TESTING MEASURE

B-4

S,-..,,

.. , . .

l+. .. - . .



,, . , . * , . C S, , .. . . .o. . -. F , .. .-.. .. ._ , - -. " . . • . • . . . • .. .

IiItirIti NIIC WOUKSNUT CONI _ __AT___

90ALMAL FACANAm-

DNT

AM.Z 1Z 3.2 4.7

AY.4 1.2 2.2 2.1

'-'x AOMAL MANAGE-Z.

.2.2 2.2 3.2 .

AN2.2. 3.2 4.

AN2.5. 3.25 .

A.4 2.6 4.1,4. 2.8
A2. 1.. 4.1 2.2
A1.4 1 2. 2.5
m AI 2.2 3. 4.6 .

"\ x x AUSNEIIT-

x APPLICTIO

A.1 1.6 2.6 3.6 (3.6)24.6 2.6
A6.2 1.6 2.6 3.6 4.6.4.11 2.6
A£.3 1.6 2.6 3. 4.11 2.6
A1.4 1.6 2.6 2.6

AUTONOMIT
AU.1 1.7 2.7 3.7 4.7.4.11 2.7

.-.2 1.7 2.7 2.7

., X COMMNLITY
CL.1 1.7 2.7 2.7
CL.Z 1.7 2.7 2.7
CL.3 1.10

. X COMMUNICATIVE-
• "" lNESS '

CN.S 1.9 2.9 2.9

CN.2 1.9 2.9 2.9

x COMLETENESS
CP.1 1.4 2.4 3.4 (3.4) 2.4

x CONCISENESS
CO.1 4.4

., I CONSISTENCY
CS.1 3.8 (3.8)
CS.2 1.8 2.8 3.8 (3.8).4.9 2.8

x DISTRIBUTED-
NESS

01.1 1.1.1.8 2.1.2.8 3.1 2.1,2.8

ACCESSIBIL ITY0A.1 1.11.':
DA.2 1.11
OA.3 1.11 4.6

I EFFECTIVENESS
E7.1 1.3 2.3 3.3
EF.2 2.3 3.3 4.3.4.11 2.3.
EF.3 2.3 3.3 (3.3) 4.3. 2.3

4.9. 4.11 r"%
EF.4 2.3 4.3.4.9. 2.3

4.11

x FUNCTIONAL
OVERLAP

t0.1 1.13

B -5 .S

• ..- , .,-..-•- ,- ,. ,. %. .- . .- ..,, •-..- ,- .. - -..; / . -; .' , .-.- .-, -,-,, ..'-.".. .," .'/,...,.'.,. .,'• . ,.'-. -.) ... ,-.'...,,



XItC WORKSHME CORUATZOU

QUALrTY VhCTOU r ASu IS -__-

r. r. r 3 .

SCOPE

FS.1 3.1 4.6
FS.2 1.S 4.7
FS.3 1.5

X- I GENERALITY
6E.1 2.6 2.6
6E.2 3.6 4.6

V.
x x x INDEPENDENCE

10.1 3.5 4.5,4.10
10.2 3.5 (3.5).4.7

.4 4.10

S I X I I X NODULAAITY
NO.2 2.1 3.5 (3.S)4.5
NO.3 1.1 2.1 3.1

I ~~OPERABILITY . .
O4P. 11. 2.2.

.4. RECONFIIW-

ABILITY
R6.1 1.7,1.8 2.7,2.8 2.712.8

x I SELF-
DESCRIPTIVENESS

50.1 4.3
50.2 4.8.4.9
50.3 4.8

4% I x I I I SIMPLICITY
S1.1 1.1 2.1.2.8 3.1 4.1 2.1,2.8 ,-..
S1.2 4.1
S1.3 3.1 4.1
SI.4 1.1 3.1 4.1,4.9

,x X SPECIFICITY ""SP.1 3.1 "

ACCESSIBILITY
SA.1 l.12 2.12 2.12
SA.2 1.12 2.12 2.12

1 5Y5T01 CLARITY
SC.1 4.1
SC.2 4.1
SC.3 2.1 4.1 2.1
SC.4 4.1
SC.S 4.1

x SYSTEM
COMPATIBILITY

ST.1 2.11 2.11
S1.2 2.11 2.11
S.3 2.11

. 5s.4 2.11
'4 51. 1.11

x TRACEABILITY
1.1 1.4 2.4 3.4

I TRAINING
11.1 2.9 2.3

x x A VIRTULITY
VR.1 1.8 2.1. 2.8 .2.8

I I X VISIBILITY
" VS.1 2.10 2.10

WS.2 2.10 2.10
VS.3 2.10 2.10

4.•

m , ( ) - aume11.ati o1 Yaz. DusS.a Subsequalt Puse

B-6

, .-- 
°  

*..+ .* "- ,-o, *." .' *' € .- *- . .- -" .. .- . - . . .. ,.. . . *•. .

, .** . .



CF. M-r-NI.C -- - J -I9 F - - -

II

-B-



I

u 24

t* a

IL

Vz - -uj
uj.

- j_ _ _ _ _ _ _ _ _ _ _

0.4.

< Nz

0 < - -

u <

LuB-8



41P 4P.41

4b4

.1~

zJ4--.1 - - - - -

19 b-

1*
.4., -45

B-94



. a a * p 3 * 4 -. -. *5.*~~* .4 ~ .. q - - - p i.e.- .4 5 6* 4-. -. -.
-I

*1 .4.-

4
.4
4
4 - a - - - -

'64-- ____________

ek 4-
* - .4

'=5-.
- - - - ___________________________________________________________________ . 4
a S A

* . - ~. 5.

.3 5....

-. I ~- -- - - *44*

N N N

- - - ~ *h.

*1 - - -

L - - - -

~ -~ N N

m - -
5

5; .4.-

4 L - - - -

.4 1
5- '4-.

*4q.'5
- - -1-i 5.

I -

U. ~ - I ~5*4~
- - - -

* I 4-II .5'.

13 ~ .5-..
= 4

.4 II *~ -%I .4.

~f~i :~. I
4 .~ 33 .3

Sc .. a1 5 * ~e ~
z ~ s~t

.4: Sc 0
4 ~* Sc ~- I-

4. ~ U-~ ~ ii
* ,S, 4'.

.4 c-S.

-5- 5- 5--

* S.-..
5' U.'

4 -~.------- -s--- - - -

.5 4..

B-1O
55

S.- 4...

* . . ~455*4.4.*~ .. .. . .. -, . . ~54

5. s ~*. 5*5 *'. **5 5*. *** ~-: *. .. .* *.** *--.* ...- ~ . .5 . 5 . . 5 5~ -
* S *..~. *5*.* **5..~* . S S S . . . - -

~*. 4 '. * 4-



S-.

,.. -

.--

ii 
.5

U" 0

" ~ I "1 -
::

** • 

°)..-

'I,"•

.3.-11

I. . .... ,..., ,..- ...- , ... ,- . -- . . . . . .. -: .... -- : .: . .. ., -.. : ..- '-.-: -: , .,.-.....,.-,.*.,1 , ... . . . .,. . : .: .. . ., . . .. . ..... :... . . .,; .: .. ., , ; ', ... ,/ .. .. :



C4-

C6 . . - -

I~ f

I' e

iS -N __ _ _ _ __ _ _ _ __ _ _ _ __ _ _ _

lu

02

a

B-12



C..

U,34
h

NL

Z

B-1



1 
PO

IM

04

- Li

< <

i~u a.-~--

Nt
4.4 _ _ _ _ _ _ _ _ _ _ _ _ _

- - - -

B-1



7- 'K- 71- -

4A .

CL,

at 24.

.

4l W

CL

W U cc

tivi

211

A E

CL t

-1



40

I~ -

* 00

00

uiD

0 4

). . or_ _E_-_

20. -ft I
5, 00 s

- - ____ __ 1 ___ ___

-v .w o-o~~ 
> 

__

-9.

IDj

B-1



96--

RF k

22

V 4

U. Nd >. -

0

0

-4 4,

IB 1



a

IS

su

C9_ _ _ _ _ _ _ _ _ _ _ _ _

.4. >- .

u0

4. 0U -0 v
Ul U - *.

gO
zL L -
0 - -L

<Z2

~1-J
LU

z B218

2 tA E



- - -

0.

e

*1 _ _ Z .

n -C6

- I1



-- - a%

34.. 4
4, -

c; _ _ _ -- _ __ _ _ _ _ _ _ _

su_ __

* _ __ ___ __ N

S-
* .-. A

24..
C0

8 -

-~ .C I 'A
I' ~ %D

4- V

z L 1
* j o

~t

uUl - a W

I--

B-20

Vps



-. ? T

___ ___ .1

10

2L 0

I'. -

%. 1

-S-

.p. IS

-J2



i -2 -

41. 0

I- I

p.. - -

.1 -

p.. .~. B-22



-a.- u.. a

- - - Li

B-2



Lu ..

-4k

i :i
- - a-

S -
N N

L - A .



"26

" - a -.- '

IL - - -i

* ad

,.i I. I - .,.
* S - -H aI -J "-

* .. a-"-

C6

aa .NN N

0 o - - -

'. b e

0*

uj (A

_'-? B-25

. . .. .~ . . .). .)
a,.. . . . ... .

., .- -/ ... .... , , -.- :...., ..-. :.: _.-€ ,... ,:..:-. . .?. ... . .. . .. : _.. . . . , . .-. .:. . .

i ... ;<,.-'.:;.'.;,'- -' ,...;-,''- .. '.,.,' -.- ,- ;- -. ' - ,. , ,-- ' ' : '.' - . -, , '. - _ - -a-;



- -, - ----a .

CC

f f4

-9~ .a

"LU

E r

"ii C

t- - -" "-..

- -- , - - - . -.

I. 0 0

)-- "'.'

---- - - -

Nc N

IJ.- - -.- - _
.

0 A0

-. c

N N

<Z j NV

ZL F. c -C E -0 -

,B-26

": "I-

.', o %.' * . , J .o o '.. , - . + o o . . " .- • • . o , , - - -. - ".- " . - . .' 'o" " . o- .." " , . . .' .- . =

. .• . - .- Ii,,.. . - j- , . . . . . . ,..•, -. - . .. . - , . . - . - . . ,- . . . ,. -..- .



I- m aI --

0 4

4.' -

Z ..

I0.-: i s- -i.

of

EF., I I :

--. 1-:

II q. , *

Z-1 -,

"", " - 4- "-

I- ~ I

.. --

__I -- , Z , Z .2 G I (

0 .. - St L1 1 j

I-

ii B-27

i* i:': "-" ' '' .."-% --- " -:--,-," " ..- ,: -.- '.. -'., * .,. . .. . . . ..- .- . . .

~ i-.. .-S .S~* .. . S S



ago.jj

* I I

u E

0 - - -

__ - - - _ _ _ _ _ _ _ _ _ _ _ _

<
.- a -

B-2



~sv. 71

K __ __ __ __ _ __ __ __ __ _ __ __ __ __ __ _ __ ___cc_ _
<

a j
0

I~Ll

0

o o J R

'uJ

B--



0

00

a

- 0

.I.J -

< ~ 00 - N N .

..-.

0 u%

4< uo z4 4-

4a~ 'J -c , tE -

B-301



.-Z

0%0 0% 0% 0 E0 A0

200

ov 0

'UJ

Iuj >

CAC

-B 3



at 
.4t 4t

azo

a ._- -,-.,

, 4t

-> - - - -.--

- 4ti
-p E> ~

4j c

-o° IN 
" N

,,....

0

, .

z -. i - - -,,-"
'. .. . - '-

• . > - - - - %

"' - - - --

:'- - ¢,. z e

I%%€

04 4

~~• =

IIs

oV

,--'"0

oi 0 v M~U40 - U EE

CA .

-N Z. ij - 10

0J E

u j

B-32

[", . . . ,,.- . . . , ' ' , ,,' ,'. . , ', - ,, ,, .... ,.. .. .'',.,.'" .... " :,. .. '. .. '.', '.. .'. .... .-.

,-'.,, ,,,.,'.,.: . ,: V. V,, .,,, ,,,-V, - ,, ,,..,< ,.- .,.,. ... ,'.... ..... . .- .-. .',..-,- .,.,. -.- '



o a

L6 1

z<
I- a

Z u h

z~

B-3



IA t

I-
u

11

-' *

A U'C

~ _____

(A

02

-B-3

% .1 _ _ _ _

*~ - ___%



I-A A

:14

* 04

-- - -

z I' %~ mV e

Il
z d4t -

-. 2
t

B-3



to g.

-~~~ S ~.-a a -

a- -

_u 
a J~ J_ _

I4
U, - - r

.4c 
:D__ 

_

X 1

-B-3

- - -% L



274C,77d

Sill

p% .4

r.t'

< - - -',

lid,

0

.,.

4%j

.. - S~

B-37

. . . . . . . . . . . . . . . . . ° .. . . ... .. . . . . . . . 4 . - . " ~



0-

iJ4 ;I '111 I
Q i?

=l c
cc 0

%.E

A0 c

07 0

, -- - -( -8 0--

to X Z. ; .2 .- .~ ..

0 Z o-i
0.I .'N

u . - 4

C ~ 
U,0--j

.- ~ S4 - .B-38.



.- 711_
'l M

t 0

--

u u
Cj

au

B-3

VI VZ__



C ..

I

zz

U'.

U4 a.-
cr U.

8-40



.........2

E_________ 
_____ ________________

4u 
-

E.

4- , ,' I.
41110'.

- 4'44

-a 0

'C.'C

0 C

I-. E Z

U. c -8!2

.M.4

0. I4 I a

ZB -41



.- . -r -.. .. . . .. . . .4 

t _ __ _

0l
uh. v

K~~i ~L ______

aL 4

4... 0

-c 'u.-
a4

0O
u L 'a = 1 1oj -9 t

LL a

ul U

B-4



. . . . .. . .

* - - - - -5!

;f '

'A. 11 a . 4. 9 m

C j u

U. E

z
_5

~0 u)

~I. _ ____

o ~B-



., -AD

44

-NJ

-- - j
uj <_m N

'U ~ - - ____ __ _ ____ _ - -

CU

o.1c

U. j -

CI. 01 M

U 410

B44



I.a

ad.

m ow
-ja" 0

<. .- A a.

zI ;o -0- EC

0~~ ~ ~ SU--> f

4, < ~ -0 4))

- 04

v*. . I- 4D_ _ E L1'EaiI

2 2 3M

- -. -j

LU

B -45



ID

CW

(0-M

""j

i o- I-
0.-

'I- -

U. "d

V tto

UJ IL
0.

0 .2 E
z J5

2j 2
*u V)

-- E v ca u

z~ ~ S u j

ujU...

----------

-, U B-46



o ' -. - - "o. 4-- .

- - -- ---

h t
.j .

o - - - -

,I- I-

-m w

-B-4

Ill "
--- .'

• , a > - - -

z .... ,,.

.s.

,' ...o*B-47J
5' l:,a a

o aa.

'. " '. ' .° -. '. •. ' , .,, ' , - - % .- . . -". ." -"-. ," . • . ' ' . . . . . . ,? , , . . , _ . ' ". * *; .



IL

LL. C - -J

IL

aA

ul 6
LU _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

IL u

a L

LU LL

B-4



I 1- 16 7

41.

x
.'4.w - ____ ____

.-

LL. -4

t ,

0 4

-. .=

4., ~ 4)it

~ 2 _____

444,2

U.Cc

.4u

Z' 's

4 4uj

uii

'Li 2 0
S.,Z

0 4-

0-4

U.S



US

LL

U A '

- zU

CL. CL

I C
0  *4

V -cu

U u

~1 B_50

' i e- __ __ -



-UJ

-A E

CL 2c -...

2d -Z ,
LI

-S..____ ____

-. 5- -

I- 0

4p0"u

-2;

0.4

~*1. iA

IuB-51



CWi - 17

-l o

3I

* 0

4%0

* j j
-Ju

z -L - m - A

C.'. 001

'a. Z -

6, .6o 0 . oC

LUU

U ILU

U! E-52

1 -- l L-7



~--W- v

W. 0. * ~ . ~ *-

al ~ - - -

Z2 4.' -L 2 Z-

zV. . o

* ~ ~ d 2 > __ _ _ _ _ _

>- z Zo

Z o-

CLC

LU lU

> 4k.~. -'1.0

0 z A v

I Zc E

<, V4 4' 4 15 0 .

E, u % 4b o... oz u
'p iJ~ . 0. ~ ~ ~ - 4'<

0 ~J >
.4 . N C 0 ~ O 0. - 0 L)

.- .j

-B-5



4... 4t

- - -

>:I
__ _ _ _ _ _ z

6.4

tLO .

44 o

v

< 4h4

. a. .

.4-5



V.2 
N

NA N4 C N N( N N

0 u

'a 0 L C

~ to

-v V

5.8 0 ' 0% 0 ' ' a
__ NN _ __ N N N N

o~~m 0

I- SC =

0a 'too

< Z o CL zX Oo vt E -
'a <~4
- j 4

.2a. a
t ~

41 i ~ ~-

B-55 *a4



ccc
<

Z

.4.

Ito

Oro.
* I-3 Zo

< U2j N 0
LID 0 c- - o -

u00 .

4-.-u .; .- u

U z. 4- a

R ~ 41 uu ' '

* "'a Ej

~00 *i~ ; . B-56



4)~

Ic

(U

p. )- .~'>

ul

>(U

t

17-

m -X

0"

V) 4)0

00

> 2 CV

U 

Q
IA v A

-j UJ

U. I-
U A ____ ____ ____ ____

Z <1

B-57



to 0

Zo

10

L.'

E

z oo

<~ -C <

tZ Z

-1 .200

ok 0
u Zu

0 a., U VCo
u- =

C o !!

EE

8 02 0

UJ4

~ .B-58



W. -. - _ __ _

i

CL

- - - -

-- Z

Z0@ 0o

I.-- t
LnW3I

i- .s9~

Lu

I CL
*~~ o )

6. E E~

E 4.2 @0 4)

U. 4-.-4
ui .u4 (U

Id') - -4..

i- LB-59



uEu

< C 0.0

z LL,

n

ii

0 ~ 0*Zo

0. V

D Z
< ~ ECL.

I~l 4,., 4go

uj v

<u u vr_- ~ ~ .n
LLI .- s .2 CL . 0 =

*~~ c. '0c * u-

CL ILl 0
C ul 0- r E

fo w
* U 0,_ _ _ _ _ _ _ _

A Va 0- 4k-.*~ -- xu



EU

-

t41

I..

z L

9...Q

9.....

.9.

.9.U

'II

.9.B 
-61U



> Z

< OCZ0

~Z F2 - - -

,V.; vz

Zu 0

I-. > Z

va 0

UU,

.2 .

%~

0L 0 4

.0 C -

UJ ?4 0e v '

u CL

CL 4)n Z )

0 0 0

4) u ~ 0 0 0'

-j mu w 'V Uu CL 2 E)

0~. ( - .~0 2

z Ii~0. L N B-62 ~



I..4

1 ii

0 l

OcD -1

Li.CL

uj 0

dj

< -

UJ 
L

-I vi
0. 

j

B -63

*~~%



* >1

al-

LUU

Z sn c.
x _ _ _ _ _ _ _ _ _

N - -

4 00

a f

x
LU

on ~ & 51E
u q

uu

V E

4-

I OEZ 2 L
0o x ~ . -~

L<U

L U

5B 8-64

'4.



-Z a

-x -

(L a

~C

Z knZ gm vs

u

tLIu

t- 0 CL

cd U.

0 

R0

<C

LU 41

tA 41

0 C
x x

CL -=E 4- cU 4

zX .2 4k- z

cr4 0 ~ f 4)IR * 4a.L u-.0

0. -Wl.

B-65 ~ i 4

%z
C - - - -%



al

j - 4P

Zu

4j >

UJ

<L

Ca iR

4i 0 a .

E . 0

0 (a 0 ( - r

I- E -8 mbv
EI a 4  

I -
6a 4, 78 4, M~I - -

z 4. A 0
C 4u 6 C<!~ ~

z 4 E ~ h.

*~ u~O4 (4 -
Q.. 4x -~ 4, .

-' ~~~u - ,~~, 4

zB-6



L6 a

cz

U -

LL - -

-Z z
U-

4b. J, 0

Il. :

u0.

NI 4-

d,

- -6



ozo. i' 
. "°o

-. . . -.. '-
04 0 NN

-V4

0*1

2 ~ ~ ~ ~ C 44 A._ _ - - - _ _ __ _ _ _ _ _ _ _

--.

N N N-

.- 
Q oN 

N

i !vi
4-

4. > i ! :

5-6

I- Z o N . ,N~'

', 
.,'

2 . 4>' ,

• J * ' ; ' " " " ",, " " , • , /": **' ', "o"r' -'- -*- ' ' "% ;. *. . . " '-% - "-,% .% " . . . -' 
41 -• .,.'''". .'..'. .°-, . .. .' ".. ', . o. .. . ''-",.....', ,.. 'o- . .' . . . , .



IOU~~

af

U Li C

tA Co

u >o
CJ ~. ~ N

-: -

LL ~ -

wu1

0B-6



4.

~~1

Z"1

EU

CC

. >* -,

4 EE

EUE

V uo m.to

00

. Zo

v to -a

4'. ______ .___.',

o E 0, E 0n

j - 0 0

'_ j U c E"

* 0.0.-

.0 V

a. 0 4 •,. a

0, 0 ""t. .to . 00
v-, C 0

U.. EU .E E 4
<I =, D00 + v -

4, Z cr- U
5 , UjE

uj 0

4- 4,B-70



0 -

20
0-

(U 
-

7S IA tou

(U

U'

-C7



V.,

-- 4i-2 - _ _ _. _ _ _ _ _

" -. . - - ":-.

0

CU

0 .
u_, " _ _ _ __ _ __ __ _,.___ _

EE- -. > C

0 U. w0Iu ZZ

.E. 41.a
, .

E c a-

0 +4)j

4'. 2 " ,, .C.

I-0- 40 CU .

- E o ..-

- Z * u -<

-,- N 4,

B-72 . "
U' " " " . . ") • -" - " ". • " .- " " ' . '

" . I, - , j 4- , ... , , . , , . • , . . .



_7 -T 
-:1

C- C

.- 0

gC 0
-E.

0

475

9. - c_

Co ' '

tk t. 2
U- 0

< (3 c0o -0 C

0 -7C3 4



V 0Z

t

o r-:: 0

2A 
c

10

-z 
0 -0

I- a- -

;-u ,- - "0

0 dm > . n 2q

(5 r

'75

LU.

B-7



EUOj

~ EE

0>

0

EU

-cj

B-7

.4 . .Z e . . . . .



E E

t

A 4)

E >1

o C
0

0 1

-a 0

o CL

0

u v v 4) V

LU,

B-7



s~t4

§a

44'(

46.-

UU

u j

0.

o 'oca*
< - J

l 0. it
U' 4j

0- v) -

U < 10 m

< 4<

B-7



-- ra- 
- -

UL

0 06

IL
IL

LU.

0.i

3-7



TII

a0

-. 0E

E0

0.0

LU a

< (a

LLD

ul2
OC.. IA

~ B-79



IA

tit

0
)-

uj <_ _ _ _ _ _ _ __ _ _ _ _ _ _

ui

t
*c - _ __ __ _ __ _

t .~. I~B480



0 0i

EU0k~__
uh.

< U ________________

HiI
LL 1 >0

U J

0,

U') 4)
vi

Z EUU

V.~ -.
81



C0

C

< 0

0

cU

-W E

0%. 0%0% 0%

U r

u -- - -

.(v 4343

u.3

C-82



L 56

Eu

- 3 0

~z C

4: LU o

30 a=.

00

1j4)

-B-8



4") 0

E 0U

I- r- o

E >

<~ v;- 0

z E

A a-

;<

7B--



c. .

*~ E 4)

tU -)V
D

>:L.-

>.

ZU_ - _ _ _ _ _ _ _ _ _ _ _ _ _ _

EL

E V U

U. 1 L

E v

*17

4 .~ 4)2

OQ-

~~B-85



.2 > N

m0

>. 0

> o>

C. E~

< (u. 0) E

B-3



HD-A1- 956 SOFTWARE QUALITY MEASUREMENT FOR DISTRIBUTED SYSTEMS 3/3
VOLUME 2 GUIDEBOOK F..(U) BOEING AEROSPACE C0 SEATTLE
WR T P BOWEN ET AL. JUL 83 RAD -TR-83 ~15-VOL-2

UNCLASSIFIED F3B602-80-C-O3O FG 9/2 NL

llIIIIIIlllEElllhlllElllEI
EllllllllllIIl
EIEEEEEEIIIII
ElEElllllllIIE
ElEEElllllllEE



-&3.-
o.4..

a mam2

IIII Il,

* 1111 25 fI.4~ E

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-963-Ar%

'NY

% °"

• I-

'I

..... .... . .......

__~~~~~~. . . . . . . .-....--...... . ... . .. ...... ._ -- --...... ,,

, ,, , ,,~~~~. . . . . .. . . .. . . . . . , . . . .... . .... . . . . . . . .. ... . . . . . . . . . -, . . . . ..~ S *



'U~~~~~% -, -- - '

IN"-W

APPENDIX C

METRIC EXPLANATIONS'U.

Appendix C contains a detailed explanation of each metric element. The explana-

tions are organized alphabeticaly by quality criteria and numerically by metric

acronym. A summary of the metric explanations is shown on the next several pages.

For each metric element, the definition (from Appendix B, Metric Tables) is stated,

'and an explanation of the element is provided.

The contents of this appendix are based on the results of this contract, "Quality

Metrics for Distributed Systems", F30602-80-C-0330 and the results of contract

F30602-80-C-0265, "Software Interoperability and Reusability". This appendix in-

cludes a refinement and reorganization of metric explanation information initially

defined in RADC-TR-77-369 and RADC-TR-80-109.

. ..-.

.-42

i V.

, c- -.U5

;-,b ::..# ,'.::::.". ....-.. ..: :: .. , .-v . .. .. ....- .. -.-..,.v -.- ... , ,,,- -.-...- ,. .-.-C.1-, ..,::.

. . . . .. ,-. -. . . - . , . , .. - -.-. .. - ,..'- , -, , -- . --- , ,-, ,. ...



*%. .

METRIC EXPLANATION SUMMARY

CRITERIA ACRONYM METRICS

ACCURACY AY.I ACCURACY CHECKLIST

ANOMALY MANAGEMENT AM.I ERROR TOLERANCE/CONTROL CHECK
LIST

AM.2 IMPROPER INPUT DATA CHECKLIST
AM.3 COMPUTATIONAL FAILURES CHECKLIST
AM.4 HARDWARE FAULTS CHECKLIST
AM.5 DEVICE ERRORS CHECKLIST
AM.6 COMMUNICATION ERRORS CHECKLIST
AM.7 NODE/COMMUNICATIONS FAILURES

CHECKLIST

APPLICATION
INDEPENDENCE AI DATA BASE SYSTEM INDEPENDENCE6

AI.2 DATA STRUCTURE
AI.3 ARCHITECTURE STANDARDIZATION e

AI.4 MICROCODE INDEPENDENCE
AI.5 ALGORITHM

AUGMENTABILITY AG.I DATA STORAGE EXPANSION MEASURE
AG.2 COMPUTATION EXTENSIBILITY MEASURE
AG.3 CHANNEL EXTENSIBILITY MEASURE
AG.A DESIGN EXTENSIBILITY CHECKLIST

AUTONOMY AU.I INTERFACE COMPLEXITY MEASURE
AU.2 SELF-SUFFICIENCY CHECKLIST

COMMONALITY CL.1 COMMUNICATIONS COMMONALITY
CHECKLIST

CL.2 DATA COMMONALITY CHECKLIST
CL.3 COMMON VOCABULARY CHECKLIST

COMMUNICATIVENESS CM.1 USER INPUT INTERFACE MEASURE

CM.2 USER OUTPUT INTERFACE MEASURE

COMPLETENESS CP.I COMPLETENESS CHECKLIST

CONCISENES- CO. 1 HALSTEAD'S MEASURE

'CONSISTENCY CS.I PROCEDURE CONSISTENCY MEASURE
CS.2 DATA CONSISTENCY MEASURE

- DISTRIBUTEDNESS DI. I DESIGN STRUCTURE CHECKLIST

DOCUMENT ACCESSIBILITY DA.I ACCESS NO-CONTROL
DA.2 WELL-STRUCTURED DOCUMENTATION
DA.3 SELECTIVE USABILITY

9.i

* . % C ~"C-2

ii-41,



METRIC EXPLANATION SUMMARY

CRITERIA ACRONYM METRICS

EFFECTIVENESS EF.I PERFORMANCE REQUIREMENTS
EF.2 ITERATIVE PROCESSING EFFICIENCY

MEASURE
EF.3 DATA USAGE EFFICIENCY MEASURE
EF.4 STORAGE EFFICIENCY MEASURE

FUNCTIONAL OVERLAP FO.1 FUNCTIONAL OVERLAP MEASURE -

FUNCTIONAL SCOPE FS.1 FUNCTION SPECIFICITY
FS.2 FUNCTION COMMONALITY
FS.3 FUNCTION COMPLETENESS

GENERALITY GE.1 MODULE REFERENCE BY OTHER MOD-
ULES

GE.2 IMPLEMENTATION FOR GENERALITY
CHECKLIST

INDEPENDENCE ID.I SOFTWARE SYSTEM INDEPENDENCE MEA-
SURE

ID.2 MACHINE INDEPENDENCE MEASURE

MODULARITY MO.2 MODULAR IMPLEMENTATION MEASURE

MO.3 MODULAR DESIGN MEASURE

OPERABILITY OP.1 OPERABILITY CHECKLIST

RECONFIGURABILITY RE.A RESTRUCTURE CHECKLIST

SELF-DESCRIPTIVENESS SD.I QUANTITY OF COMMENTS .
SD.2 EFFECTIVENESS OF COMMENTS MEASURE
SD.3 DESCRIPTIVENESS OF LANGUAGE MEAS-

URE

SIMPLICITY SI.1 DESIGN STRUCTURE MEASURE
51.2 STRUCTURED LANGUAGE OR PRE-

PROCESSOR
51.3 DATA AND CONTROL FLOW COMPLEXITY

MEASURE
SI.4 CODING SIMPLICITY MEASURE

SPECIFICITY SP.I SCOPE OF FUNCTION MEASURE

SYSTEM ACCESSIBILITY SA. I ACCESS CONTROL CHECKLIST
SA.2 ACCESS AUDIT CHECKLIST

C-3
°% l



METRIC EXPLANATION SUMMARY p

CRITERIA ACRONYM METRICS

SYSTEM CLARITY SC.1 INTERFACE COMPLEXITY
SC.2 PROGRAM FLOW COMPLEXITY
SC.3 APPLICATION FUNCTIONAL COMPLEXITY
SC.4 COMMUNICATION COMPLEXITY
SC.5 STRUCTURE CLARITY

SYSTEM COMPATIBILITY SY.1 COMMUNICATION COMPATIBILITY
CHECKLIST

SY.2 DATA COMPATIBILITY CHECKLIST
SY.3 HARDWARE COMPATIBILITY CHECKLIST
SY.4 SOFTWARE COMPATIBILITY CHECKLIST
SY.5 DOCUMENTATION FOR OTHER SYSTEM

TRACEABILITY TR.I CROSS REFERENCE
TRAINING TN.I TRAINING CHECKLIST

VIRTUALITY VR.I SYSTEM/DATA INDEPENDENCE CHECK-
LIST

VISIBILITY VS.1 MODULE TESTING MEASURE
" VS.2 INTEGRATION TESTING MEASURE

VS.3 SYSTEM TESTING MEASURE

a..
.1*0,

C-4

.. ,

a..

.,p . j j, * S.%. . .* °, , V% ° -- P .' M ".P a . * .- •. . -. " .; . %* _ q "" .. . . "*-* . " " * . 5- 5. * ,M . *..
' " ' ' ' ' "

° " .



Criteria: Accuracy

Metric: AYA Accuracy Checklist.
Each element is a binary measure indicating existence or absence of the

elements. The mretric is the sum of the scores of the following applica-
ble elements divided by the number of applicable elements.

(1) Error analysis performed and budgeted to module.
An error analysis must be part of the requirements analysis performed to
develop the requirements specification. This analysis allocates overall

accuracy requirements to the individual functions to be performed by the
system. This budgeting of accuracy requirements provides definitive y

objectives to the module designers and implementers.

(2) A definitive statement of requirement for accuracy of inputs, outputs, N
processing, and constants.
See explanation (1) above.

(3) Sufficicacy of math library.
The accuracy of the math library routines utilized within the system is
to be checked for consistency with the overall accuracy objectives.

(4) Sufficiency of numerical methods.
The numerical methods utilized within the system are to be consistent
with the accuracy objectives. .i

(5) Execution outputs within tolerances.
A final measure during development testing is execution of modules and
checking for accuracy of outputs. -

V(6) Accuracy requirements budgeted to functions/modules.
The budgeting of accuracy requirements is repeated at succeedingly
lower levels of design - during preliminary and detail design.

4' C-5

% %~



Criteria: Anomaly Management

Metric: AM.1 Error Tolerance/Control Checklist.
The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Concurrent processing centrally controlled.
Functions which may be used concurrently are to be controlled centrally

to provide concurrency checking, read/write locks, etc. Examples are a
data base manager, 1/0 handling, error handling, etc.

(2) Errors fixable and processing continued.
When an error is detected, the capability to correct it on-line and then
continue processing should be available. An example is an operator
message that the wrong tape is mounted and processing will continue
when correct tape is mounted.

(3) When an error condition is detected, the. condition is to be passed up to

calling routine.
4 The decision of what to do about an error is to be made at a level

where an affected module is controlled. This concept is built into the

design and thimplemented.

(4) Any parallel processing centrally controlled.
When parallel processing is performed it is controlled by concurrent
inputs, by concurrent output checks, and/or by comparing output results.

C-64

le,



Criteria: Anml angmn

Metric: AM.2 Improper Input Data checklist.
The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) A definitive statement of requirement for error tolerance of input data.
The requirements specification must identify the error tolerance cap- t

abilities desired.

(2) Range of values (reasonableness) for items specified and checked.

The attribute of each input item is to be checked f or reasonableness.

4. Examples are checking items if they must be numeric, alphabetic, posi-
tive or negative, of a certain length, nonzero, etc. These checks are to .
be specified at design and exist in code at implementation.

(3) Conflicting requests and illegal combinations identified and checked.
Checks to see if redundant input data agrees, if combinations of para-

meters are reasonable, and if requests are conflicting. These checks

should be documented in the design and exist in the code at implementa-

tion.

(4) All input is checked before processing begins.
Input checking is not to stop at the first error encountered but. to

continue through all the input and then report all errors. Processing is
not to start until the errors are reported and either corrections are

made or a continue processing command is given.

(5) Determination that all data is available prior to processing.
To avoid going through several processing steps before incomplete input

data is discovered, checks for sufficiency of input data are to be made

prior to the start of processing.

C-7



-N.N

Criteria: Anomaly MFanagementmm

Metric: AM.3 Computational Failures Checklist.
The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements. .

(1) A definitive statement of requirement for recovery from computational
failures.
The requirement for this type of error tolerance capability are to be
stated during requirerhents phase.

(2) Loop and multiple transfer index parameters range tested before use.

Range tests for loop indices and multiple transfers are to be specified at

design and to exist in code at implementation.

(3) Subscript checking.
Checks for legal subscript values are to be specified at design and coded
during implementation.

(4) Critical output parameters reasonableness checked during processing.

Certain range-of -value checks are to be made during processing to
ensure the reasonableness of final outputs. This is usually done only for

critical parameters. These are to be identified during design and coded

during implementation.

Metric: AM.l4 Hardware Faults Checklist. S.

The metric is the sum of scores from the applicable elements divided by
the number of applicable elements.

*JS. %t



Criteria: Anomaly Manatement

(1) A definitive statement of requirements for recovery from hardware

faults.
The handling of hardware faults such as arithmetic faults, power failure,

clock interrupt, etc., are to be specified during the requirements phase.

(2) Recovery from hardware faults.
The design specification and code to provide the recovery from the

hardware faults identified in the requirements must exist in the design

and implementation phases respectively.

Mietric: AM.5 Device Errors Checklist.

The metric is the sum of the scores given to the following applicable

elements divided by the number of applicable elements.

(1) A definitive statement of requirements for recovery from device errors.

The handling of device errors such as unexpected end-of-files or end-of-

tape conditions and read/write failures are specified during the require-

ments phase.

(2) Recovery from device errors.

The design specification and code to provide the required handling of

device errors must exist in the design and implementation phases respec-

tively.

Metric: AM.6 Communications Errors Checklist.

The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) A definitive statement of requirements fot acovery from communication

errors.
Explicit requirements are to be stated for recovery from communication

* errors.

C-9

. . . . .r



Criteria: Anomaly Management

(2) Provisions for recovery from communication errors.

The preliminary design should reflect a design solution to the stated

requirements.

&(3) Check sums computed and transmitted with all messages.
Check sums are a common form of detecting communication errors.

(4) Check sums computed and compared upon message reception.
Check sums are a common form of detecting communication errors.

Metric: AM.7 Node/Communications Failures Checklist.
The metric is the sum of the scores given to the following elements
divided by the number of applicable elements.

(1) A def initive statement of requirements for recovery f rom

* node/communication failures.

V.Explicit requirements are to be stated for recovery f rom
node/communication failures.

(2) Provisions for recovery from node/communication failures.
The preliminary design should ref lect a design solution to the stated
requirements.

(3) Adjacent nodes checked for operational status.
Checking adjacent nodes is a common form of detecting node failures.

(4) Alternate strategies for message routing.
Employing an alternate message routing strategy is a common way of
recovering from node/communication failures.

C-1



V,.

Metric: ALI! Database System Independence.
Software which is free from database system reference has higher reus-

ability.

The metric measure is based on how the module is independent of the .

database system.

(1) Free from database system reference.
The metric is based on the database system reference d-.~n a module.

Metric: AI.2 Data Structure.

Generalized data structures which are easy to unk i d, flexible, and
4extensible reduce the costs associated with reusing the software. The

software with control of data structure has enhanced modifiability, and
it tends to be more reusable. The metric is the sum of the scores of

4. the following applicable elements divided by the number of applicable
elements.

(1) Data in parameter list, data structure described parametrically. .-

Parametric definitions of data structures will reduce the reuse software
costs. The metric is based on how many data items could be para- *..

metrized and parametrized data items.

(2) Data communicated through common storage region and with adequate
cornments.
To reduce the software reuse costs the data should be centrally con-
trolled such as through global storage. Then common data in a module
must have adequate explanations. This is a binary measure.

(3) Control of dtabase structures, both global and local, i.e., all data
centrally controlled and symbolically defined and referenced.
See explanation for (2) above.

46

C-li11-

.. .' .~' .~ .~ . . ... . . . . .



Criteria: Application Independence

(4) Logical procebing independent of data storage specification and require-
ment.

The software with logical processing independent of data storage will

tend to be more reusable. The measure is based on the number of

modules which do not comply.

(5) Each module has code comments about data items description including

global & parameter input/output and local variables.

See explanation for (2) above.

Metric: AI.3 Architecture Standardization.

Standardization of computer architecture can increase the potential

reuse of software by increasing the number of environments in which the

software can be executed without change. The metric is the sum of the

scores of the following applicable elements divided by the number of

applicable elements.

(1) Module is free from computer architecture reference.
When software is independent from computer architecture reference it

tends to be more reusable. This is a binary measure.

(2) Module is in standard 32 bits computer architecture (Nebula).
When software is in a standard computer architecture then it will be

easier to reuse in another computer with standard architecture. This is

a binary measure.

(3) Code statements are free from machine architecture.

See explanation for (1) above.

C- -12

" - ' . -2

. .
•

. . .



Criteria: AppliatonIndepndence

Metric: AI.' Microcode Independence.
Using the microcode or machine language code in software will reduce
the number of environments where software can be reused and also -

reduce the software flexibility. The metric measure is based on how the
module is free from microcode instructions.

(1) Number of modules used microcode instruction.
The metric is based on the microcode references within a module.

4 Metric: AI.5 Algorithm.
An algorithm that functions well over a wide range of inputs will
generally require less modification before it can be reused. The use of
table driven algorithms will produce highly reusable software which can
be easily adapted to different applications. The metric is the sum of
the scores of the following applicable elements divided by the total
number of applicable elements.

(1) Valid range.
The range of inputs the function algorithm can handle. The metric is
based on the number of the domains the algorithm works for.

(2) Is the algorithm table driven?
The table-driven algorithm can be easily adapted to different applica-
tions. The metric is a binary measure.

(3) Is the algorithm certification available?

The software with algorithm certification available tends to be more
reusable. The metric is a binary measure.

(4) Is the algorithm test data available?

See explanation for (3) above.

C-13



Criteria: Application Independence

(5) Each module has code comments about algorithm description.

The algorithm usage should be explained in the code comments. The

measure is based on the number of modules which do not follow this

practice.

C-1-

- .V-

• * '

-,', 
.

-p.-

5,"o

," - .- 
.

'S.'

.s: C-14 "N

-,, .. ,€ --, , .- , . - ,.-'.,,,:% .;';. ..-..;,..; .-.-.. ... ...:. . ,:- ..- '-g.'...£.-..... ---. . .. .. .... ,



"- "--- .'"'.

Criteria: Augmentability

Metric: AG.I Data Storage Expansion Measure.

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Logical processing independent of storage specification/requirements.
The logical processing of a module is to be independent of storage size,

buffer space, or array sizes. The design provides for variable dimensions

and dynamic array sizes to be defined parametrically. The metric is

based on the number of modules containing hard-coded dimensions which

do not exemplify -this concept.

(2) Percent of memory capacity uncommitted.

The amount of memory available for expansion is an important measure.

This measure identifies the percent of available memory which has not

been utilized in implementing the current system.

(3) Percent auxilliary storage capacity uncommitted.

See explanation for (2) above.

Metric: AG.2 Computation Extensibility Measure.

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Accuracy, convergence, timing attributes which control processing are .. "

parametric.

A module which can provide varying degrees of convergence or timing to

achieve greater precision provides this attribute of extensibility. Hard-
coded control parameters, counters, clock values, etc. violate this meas-

ure. This measure is based on the number of modules which do not

exemplify this characteristic.

C-15

, . 4 4 4 4 .- .44. . . . . . . .

.,'.- • .. . . . ..- .... , .....%..,. ,.- ,2 - ... , ' ..... .' - .. . .. ....'... ..-..-.--... ,... . .4 .-.
4.'"'" ''. 4'.."''' ,-.,, 4 ''S '.,,-'..'' '':- .". ,", .' ... ' .' -.- -:': -' .'-- '- '. "- ,

"4' '. 44 *4 r 
"

" r w ' -' r' . '.-. .% " " '" " " .' '. ''. "''""' '.': ' . ""



S..V

Critria: Auzmentability

()Modulestaldrvn

The use of tables within a module facilitates different representations
adprocessing characteristics. This measure which can be applied

during design and implementation is based on the number of modules

which are not table driven. lltz

(3) Percent of speed capacity uncommitted.

A certain function may be required in the performance requirements

specification to be accomplished in a specified time for overall timing
objectives. The amount of time not used by the current implementation

-~ of the function is processing time available for potential expansion of

computational capabilities. This measure identifies the percent of total

Y5 processing time that is uncommitted.

Metric: AG.3 Channel Extensibility Measure.
The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Spare 1/0 channel capacity (by peripheral).
A load will be placed on the channels to each peripheral because of the

design solution. The amount of channel capacity which is uncommitted

is the amount available for potential expansion.

(2) Spare communication channel capacity.
A load wilbe plcdon eahcommunication canlbecause ofthe

design solution. The amount of communication channel capacity which is

uncommitted is the amount available for potential expansion.

Metric: AGA4 Design Extensibility Checklist.

The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

C- 16



Criteria: Austmentability

(1) Processors, communication links, memory devices, and peripherals corn-

patible (of a common vendor or model).
It is desirable to have network hardware compatible as this minimizes

44. interface complexity and eases the task of expansion.

(2) Documentation reveals performance price of software/system for en-

hancement trades.
The cost required to achieve the specified performance levels has seldom
been documented; yet this is an essential element in performing trades
for enhancing the system.

(3) Specifications identify new technology tradeoff areas for software.
This information would be useful for future changes in the software and
the system.

(4) Software specifications include requirements for the criteria of the qual-
ity factor expandability.
Building in the expansion capability will minimize future costs.

C-1



Criteria: Autonomy

Metric: AU.1 Interface Complexity Measure.
The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

der

(1) Processes/functions separated as logical "wholes" to minimize interface

complexity.
Minimizing interface complexity in the functional design will aid in

keeping interfaces simple in the detail design.

(2) Interface code.

The greater the amount of interface code, in general, the more complex

is the interface. This measure identifies the fraction of non-interface -

code.

(3) Interface modules.

The greater number of interface modules, in general, the more complex

is the interface. This measure identifies the fraction of non-interface

modules.

(1&) Communication loading.

The complexity of the interface is reflected in part by the percentage of
use.
This measure identifies the fraction of idle interface communication

time.

Metric: AU.2 Self-sufficiency Checklist.
The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Software volatility - each CPU/system has separate power supply.
44* System software vulnerability is reduced by increasing the independence

of each CPU/system.



S.. . .. .. 
7 -

Criteria: Autonomy

(2) Each scheduling unit (i.e., executive, operating system) tests its own

* operation, communication links, memories, and peripherals.

System software vulnerability is reduced through independent node self-

test.

(3) Software system includes word-processing capability.

System autonomy is enhanced by being able to produce documentation

on-site.

C--49

",,-

.' a

*1 *::'.-

::.:

4 ' . .e 

. .

* . ,... .:.:.:.:.:." .' .,:....... ........ . . . . '..." :': ": "..... . . . . . -. .: . ". " ." . - . - .: .' .

. . . . .."......-, ..,'.. ... .. ,... .;€-. .,.- .... '..'-.,.. .-........ ... •.. .... -- .. .. .,.. 4-.... .-.. '.. .. ,..........".....



Criteria: Commonality

Metric: CL.I Communications Commonality Checklist.
The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1) Definitive statement of requirements for communication with other sys-

tems.
* During the requirement phase, the communication requirements with

other systems must be considered. This is a binary measure of the
existence of this consideration.

(2) Protocol standards established and followed for network process control.
* The communication protocol standards for communication with other

systems are to be established during the design phase and followed

during implementation. This binary measure applied at each of these
phases indicates whether the standards were established and followed.

(3) Single module interface for input (from another system).
The more modules which handle input the more difficult it is to inter-
face with another system and implement standard protocols. This meas-
ure is based on the reciprocal ofthe nubrof mdlswhich handle
input.

(4) Single module interface for output (to another system).

For similar reasons as (3) above this measure is the reciprocal of the
number of output modules.

(5) Specific requirements for network process control.

Network process control requirements should be specified during the
requirements analysis phase and consider all nodes in the network.

C-20



Criteria: Commonality

(6) Specific requirements for user session control.
Requirements for the control of a user session on the network should be
specified during the requirements analysis phase and consider all nodes in
the network.

(7) Specific requirements for communication routing strategy.
Requirements for communication routing should be specified during the
requirements analysis phase and consider all nodes in the network con-
figuration.

1(1) Protocol standards established and followed for user session control.
The design and implementation should comply with network-wide proto-

col standards.

(9) Protocol standards established and followed for communication routing.

The design and implementation should comply with network-wide proto-
col standards.

*(10) Number of systems responding correctly to successfully complete hand-

shaking. The larger the number of systems which must respond correct- .

ly, the greater the effort required.

*~ (1) Low time dependency on handshaking. High time dependencies impose
greater constraints on computation and response times, which will in-

* crease the total ef fort.

(12) No communication time dependency.
If the communication function has time dependencies, such as freshness
of data or response to input data within certain time limits, then the
effort increases.

C-21



Criteria: Commonality

(13) Number of other systems this system will interface with.

The number of systems with which this system Must interoperate should
greatly affect the total interoperability effort.

(14) No timing dependency on data freshness.

The requirement for data freshness will increase effort to meet timing

factors.

(15) Operating procedures known.

The operating procedures used with the system must be known so the
requirements can be understood in context.

Metric: CL.2 Data Commonality Checklist.
The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

d(1) Definitive statement for standard data representation for communication

with other systems.
This is a binary measure of the existence of consideration for standard

data representation between systems which are to be interfaced. This
must be addressed and measured in the requirements phase.

(2) Translation standards among representations established and followed.
More than one translation from the standard data representations used

f or interfacing with other systems may exist within a system. Standards

for these translations are to be established and followed. This binary

measure identifies if the standards are established during design and

.'. ... followed during implementation.

(3) Single module to perform each translation.

This measure is the reciprocal of the maximum number of modules which
perform a translation.

-? C-22

% %



Criteria: Commonality

k Metric: CL.3 Common Vocabulary Checklist.

The binary metric is the single value answer to the question of common

vocabulary use among interoperating systems. If there is more than one

system with which the subject system is to interoperate, then the /alue

of this metric is the average of the individual metrics for each inter-

operating system.

(1) Do both projects use the same technical vocabulary with identical mean-

ings? According to published material on interoperability, one of the

most prevalent and pervasive problems is the use of inconsistent termin-

ologies. Projects may use different vocabularies with the same mean-

ings, or use the same vocabulary with different meanings. As a result, ""

.- people either don't understand each other and know it, or don't under-

stand each other and don't know it. Either way, interoperability pro-

blems are the sure result.

C-23

.w .-

-°.. 
.°°

'.5-

4..

. . . . .. . . . . . . . . . . . . . . . ..-... . . . .. . . . . . . . . . . . . . . . .



Criteria: Communicativeness

Metric: CM. I User Input Interface Measure.

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Default values defined.
A method of minimizing the amount of input required is to provide
defaults. This measure, applied during design and implementation, is

based on the number of defaults allowed divided by the total number of
input parameters.

(2) input format uniform.

The greater the number of input formats there are the more difficult
the system is to use. This measure is based on the total number of input

formats.

(3) Each input record self-identifying.
Input records which have self-identifying codes enhance the accuracy of

user inputs. This measure is based on the number of input records that
are not self identifying divided by the total number of input records.

*(4) Input can be verified by user prior to execution.

The capability, displaying input upon request or echoing the input auto-
matically, enables the user to check his inputs before processing. This is

a binary measure of the existence of the design and implementation of
this capability.

(5) Input terminated by explicitly defined logical end of input.
The user should not have to provide a count of input cards. This is a

binary measure of the design and implementation of this capability.

C-24

9.7



Criteria: Communicativeness

(6) Provision for specifying input from different media.

The flexibility of input must be decided during the requirements analysis

phase and followed through during design and implementation. This is a

binary measure of the existence of the consideration of this capability

during all three of these phases.

Metric: CM.2 User Output Interface Measure.

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Selective output controls.

The existence of a requirement for, design for, and implementation of

selective output controls is indicated by this binary measure. Selective

controls include choosing specific outputs, output formats, amount of

output, etc.

(2) Outputs have unique descriptive user oriented labels.

This is a binary measure of the design and implementation of unique

A. output labels. In addition, the labels are to be descriptive to the user.

This includes not only the labels which are used to reference an output

V. report but also the title, column headings, etc. within that report.

V (3) Outputs have user oriented units.

This is a binary measure which extends (2) above to the individual output

items.

- (4) Uniform output labels.
This measure corresponds to (2) above and is the reciDrocal of the
number of different output formats.

• * *

4.-a 
', N

C-25

o 
o" . -. .

---" . 4c . .. . - 2 . :;-:.,
- . . . .



Criteria: Communicativeness

(5) Logical groups of output separated for user examination.

Utilization of top of page, blank lines, lines of asterisks, etc., provide

for easy identification of logically grouped output. This binary measure

identifies if these techniques are used during design and implementation.

(6) Relationship between error messages and outputs is unambiguous.
This is a binary measure applied during design and implementation which

* ::*;identifies if error messages will be directly related to the output.

(7) Provision for redirecting output to different media.

This is a binary metric which identifies if consideration is given to the
capability to redirect output to different media during requirements

analysis, design, and implementation.

(8) Standard user interfaces for network information and data access.
This is a binary metric which considers a common user language for

accessing information/data throughout the network. This capability re-
lieves the user of the need to know the languages of different nodes.

C-26

............. V..



Criteria: Completeness

Metric: CP.l Completeness Checklist.

This metric is the sum of the scores of the following applicable elements

divided by the number of applicab!e elements.

(1) Unambiguous requirements/references for input, function, and output.

Unique references to data or functions avoid ambiguities such as a

function being called one name by one module and by another name by
another module. Unique references avoid this type of ambiguity in all
three phases.

(2) All data references defined, computed, or obtained from an external

source. -.

Each data element is to have a specific origin. At the requirements
level only major global data elements and a few specific local data
elements may be available to be checked. The set of data elements
available for completeness checking at the design level increases sub-
stantially and is to be complete at implementation.

(3) All defined functions used.

A function which is defined but not used during a phase is either
nonfunctional or a reference to it has been omitted.

(4) All referenced functions defined.

A system is not complete at any phase if dummy functions are present

or if functions have been referenced but not defined.

(5) All conditions and processing defined for each decision point.

Each decision point is to have all of its conditions and alternative

processing paths defined at each phase of the software development.

C-27

.- .- .- .. . - . U ' *U, . .. , . . . , . .~ . . ,* . - -U. . _. . - . -. , .

,, .' .. .. _ ,. .. , €..... ............ '. ........ .... ". ......-.......-.....-.............. ,....-. ".-..-. .-



Criteria: Completeness

The level of detail to which the conditions and alternative processing are
described may vary but the important element is that all alternatives
are described.

(6) All defined and referenced calling sequence parameters agree.
For each interaction between modules, the full complement of defined
parameters for the interface is to be used. A particular call to a
module should not pass, for example, only five of the six defined para-
meters for that module.

(7) All problem reports resolved.

At each phase in the development, problem reports are generated. Each

is to be closed or a reolution indicated to ensure a complete product.

C-2

*~ %.

4. e



L4.

4'Criteriar. Conciseness

Metric: CO. I Halstead's Measure.
The metric is based on Halstead's concept of length (HALSM77).

The observed length of a module is
No = N1 + N2 where:
N1 = total usage of -all operands in a module
N2 =total usage of all operands in a module

The calculated length of a module is
.4'Nc =nIlog2nl + n210g2n2 where:

n= number of unique operators in a module
n2number of unique operators in a module

The metric is normalized as follows:

Nc -No

1- No or,

Nc -No

0 if -NO greater than I

* At a system level the metric is the averaged value of all the module metric values.

-C-2



Criteria: Consistency

Metric: CS.I Procedure Consistency Measure.
The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1) Standard design representation.
Flow charts, HIPO charts, Program Design Language - whichever form of
design representation is used, standards for representing the elements Of

control flow are to be established and followed. This element applies to :
design only. The measure is based on the number of modules whose
design representation does not comply with the standards.

(2) Calling sequence conventions.
Interactions between modules are to be standardized. The standards are

to be established during design and followed during implementation. The
measure is based on the number of modules which do not comply with
the conventions.

(3) Input/output conventions.
Conventions for which modules will perform I/0, how it will be accom-
plished, and the I/0 formats are to be established and followed. The
measure is based on which modules do not comply with the conventions.

(4) Error handling conventions.

A consistent method for error handling is required. Conventions estab-
.5 lished in design are followed into implementation. The measure is based

on the number of modules which do not comply with the conventions.

- 4C-30



-.
Criteria: Consistency

Metric: CS.2 Data Consistency Measure.

The metric is the sum of the scores of the following applicable elements

"A divided by the number of applicable elements.

(1) Standard data usage representation.

In concert with CS.I (1), a standard design representation for data usage

is to be established and followed. This is a design metric only, iden-

tifying the number of modules which violate the standards.

(2) Naming conventions.

Naming conventions for variables and modules are to be established and

followed.

(3) Consistent global definitions.

4" Global data elements are to be defined in the same manner by all

modules. The measure is based on the number of modules in which the
global data elements are defined in an inconsistent manner for both

design and implementation.

(4) Requirements for verifying database consistency/concurrency.

In a system where multiple versions of the same information and data
Il-_

exist at different nodes, requirements should be stated to verify consis-.

tency and concurrency of the multiple versions.

(5) Procedures for verifying database consistency/concurrency.

As in (4) above, procedures should be developed for verifying
consistency/concurrency of multiple versions.

C.-.
I;.. 

.

p~ 
° . 

' '" . , . - . . ...- .. - • • - , .,- ... . ° ... .. " . .°. - . .- , .- -. " 2 -o

,~~. . . . .. . . . . .. . . .. . . - . °° - -° ° - , - . • . - • • . . - . - , o % '



Criteria: Distributedness

Metric: DI.I Design Structure Checklist.
The metric is the sum of the scores given to the following elements

* divided by the number of applicable elements.

(1) Design organization identifies all functions and interfaces.
Identification of the complete set of functions and interfaces is essential

to the design.

(2) Database organization identifies all data and data flow.

Identif ication of the complete set of data and flows is essential to the

4, design.

(3) Specific requirements for information distribution within the database.

Early decisions are required on how to distribute information within a

network.

(4) Provisions for file/library access from other nodes.

Network nodes will rely on other nodes for some information or for

backup data.

(5) Provisions for selecting alternate processing capabilities.

A versatile network design will provide alternate processing sources.

(6) Critical system functions distributed over redundant elements/nodes.

System vulnerabilty is reduced by distributing critical functions across

different nodes.

(7) Distribution of control functions ensures network operation/integrity

under anomalous conditions.
Again, a good network design will take advantage of the redundant

processing capability and distribute network control functions across

different nodes.

.4 C-32



Criteria: Distributedness

(8) Logical structure and function separated in the design.

Logical entities can be grouped under one function or can be separated

among several functions. It is important to distinguish between logical

~, .~structure and function.

(9) Physical structure and function separated in the design.

Functions can be grouped within one physical structure or can be separa-

ted among several physical structures. It is important to distinguish
* between physical structure and function.

(10) Number of nodes that can be removed and still have each node able to
communicate with each remaining node (Kleitman's algorithm).

The node connectivity is the minimum number of nodes whose removal

K-': will disconnect the two nodes. If the two nodes have an arc linking
them, there is no way to disconnect them by removing nodes, not even

by removing all n - 2 of the remaining nodes in an n node network. In
this case the node connectivity is defined as n - 1. If a network can

withstand the loss of k nodes, it can also withstand the loss of k links,
by Whitney's theorem. An algorithm due to Kleitman (1969) is as

follows. Pick any node at random and call it N1 and every other node in
the network is at least k + 1.

Now delete N1 and all its attached links from the network and choose

another node, N 2. Verify that this node has at least a node connectivity
-4.-'of k with every other node. Next, remove N2 and its attached links

from the network and choose a third node, N3 . Verify that N3 has at
least a node connectivity of k - I with each of the remaining nodes.

Continue this process until you have verified that some node N isl

I-connected to all nodes of the remaining network. At this point the

algorithm terminates.

Kleitman, D.: "Methods for Investigating the Connectivity of Large
d Graphs," IEEE Trans. Circuit Theory, vol. CT-16, pp. 232-233, May

1969.

C-33



77

Criteria: Distributedness

S. Even (1975) has devised another way to check for connectivity k.

a, Even, S.: Graph Algorithms. Potomac, Md.: Computer Science Press,

1979.

Even, S.: "An Algorithm for Determining Whether the Connectivity of a
Graph Is at Least k,11 SIAM :i. Comput., vol. 4, pp. 393-396, Sept.
1975.

C-3

.N1



Criteria: Document Accessibility

Metric: DA. I Access No-Control.

(1) Is there no access control to the software document?
This metric provides a measure of the ease of access to software

documents.

Metric: DA.2 Well-Structured Documentation.
The metric is the sum of the following applicable elements divided by

* the number of applicable elements.

(I) Clearly and simply written documents.
When the documents are the more clearly and simply written, the soft-

.... 'ware programs are the easier to understand and are more useful. This is
a binary measure.

(2) Neat and carefully drawn software flow charts with adequate informa-
tion and explanation.

When the documents provide system software flow charts and explain the
functions performed, they are more useful. This is a binary measure.

(3) Hierarchical structured table of contents used in documents.
The documents with hierarchical structure will make it easy to skim
through unti the desired information is found, then read in detail. Then
the information in the documents is more accessible. This is a binary
measure.

(4) Index system used in documents.
Documents with an index system will make it easier and faster to locate
the required information. Then the contents of the documents are more
accessible. This is a binary measure.

*(5) Separate volumes based on function provided.

See explanation for (3) and (4) above.

C-35



Criteria: Document Accessibil~y

(6) Provide global information about the functional range of the system.

The documents should have global information about the range of the

function performed. Then the documents are more useful. This is a

binary measure.

(7) Describe the functions performed.
The documents should describe the functions performed in the system.

This is a binary measure.

(8) Describe the algorithm used and limitations.

The documents should describe the algorithm and their limitations. Then

the user will know if they are applicable or not for the desired applica-

* tion. This is a binary measure.

*(9) Describe the relationship between functions.

The documents should describe the relationship between the functions.

Then the documents will be more useful. This is a binary measure.

(10) Provide software program listing.

The documents should contain the program source listing. Then the

information in the documents is complete. This is a binary measure.

Metric: DA.3 Selective Usability
The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Options available to the user so that selected computation or output

feature may be requested.
A: The software with these options tends to be more reusable. This is a

binary measure.

4.,. C-36



.W .7 7.,4

Criteria: Document Accessibility

(2) Modules allow for modifying resource utilization i.e., through use vari-

able dimensioned arrays.
The software allowing resource utilization modification tends to be more

reusable. This is a binary measure.

(3) Required new functions can be satisfied by using existing design.
The required functions for the new application can generally be satisfied

by adaptation of functions/modules from the existing design. The meas-

ure is based on the number of existing functions associated with the
required new functions. This is an application -dependent metric.

C-37

* .... .. . . . . .. . .*. .**$ . . . . . .



Criteria: Effectiveness

Metric: EF. I Performance Requirements.

Performance requirements and limitations specified and allocated to

functions/design.
Performance requirements for the system must be broken down and allo-

cated appropriately to the functions and modules during the design. This

metric simply identifies if the performance requirements have (1) or

have not (0) been allocated during the design.

Metric: EP.2 Iterative Processing Efficiency Measure.

The metric at the module level is the sum of the scores of the following

applicable elements divided by the number of elements. At the system

level it is an averaged score for all of the modules.

(1) Non-loop dependent computations kept out of loop.

Such practices as evaluating constants in a loop are to be avoided. This

measure is based on the number of non-loop dependent statements found

in all loops in a module. This is to be measured from a detailed design

representation during design and from the code during implementation.

(2) Performance optimizing compiler/assembly language used.

* . This is a binary measure which identifies if a performance optimizing

compiler was used (1); or if assembly language was used to accomplish
performance optimization (1); or if neither were used (0).

(3) Compound expressions defined once (implementation only).
Repeated compound expressions are to be avoided from an efficiency

standpoint. This metric is based on the number of compound expressions
which appear more than once.

(4) Number of overlays.
*The use of overlays requires overhead with respect to processing time.

C- 38

.P4



Criteria: Effectiveness

This measure, the reciprocal of the number of overlays, reflects that

overhead. It can be applied during design, when the overlay scheme is

defined, and during implementation.

(5) Free of bit/byte packing/unpacking in loops.

This is a binary measure indicating the overhead involved in bit/byte

packing and unpacking. Placing these activities within loops should be

avoided if possible.

(6) Module linkages.

This measure essentially represents the inter-module communication

overhead. The measure is based on the amount of execution time spent

during module-to-module communication.

(7) Operating system linkages.

This measure represents the module to OS communication overhead. The

measure is based on the amount of execution time spent during module

to OS communications. L

Metric: EF.3 Data Usage Efficiency Measure.

The metric at the module level is the sum of the scores of the following

applicable elements divided by the number of applicable elements. The

system metric is the averaged value of all of the module metric values.

(I) Data grouped for efficient processing.

The data utilized by any module is to be organized in the data base,

"* - buffers, arrays, etc., in a manner which facilitates efficient processing.
The data organization during design and implementation is to be exam-

._. ined to provide this binary measure.

C-39
- % ' '. ' I
,,,' .'-4

gh1

""-, -Z- , ,- .' " , -." ,,-' .
"

".--" " '" -"-","""-'-,,"-'" ,' .'- . -"", - "-'* -" " --. .-.-" -.-" -" .-" "" •' - ", - ' " .""



Criteria: Effectiveness

(2) Variables initialized when declared.

This measure is based on the number of variables used in a module which

are not initialized when declared. Efficiency is lost when variables are

initialized during executic- of a function or repeatedly initialized during

iterative processing.

(3) No mix-mode expressions.

Processing overhead is consumed by mix-mode expre sions which are

otherwise unnecessary. This measure is based on the number of mix-

mode expressions found in a module. -

(4) Common choice of units/types.

For similar reasons as expressed in (3) above this convention is to be

followed. The measure is the reciprocal of the number of operations

performed which have uncommon units or data types.

(5) Data indexed or referenced for efficient processing.

Not only the data organization, (1) above, but the linkage scheme P

between data items effects the processing efficiency. This is a binary
measure of whether the indexing utilized for the data was chosen to

facilitate processing.

(6) Static data.

This metric measures the numbers of data items which were referenced

but not modified during execution.

(7) Dynamic data.

This metric measures the number of data items which were modified . -

during execution.

C-110
: . .. • •



- W ! - *n -,. .- - o

Criteria: Effectiveness

Metric: EF.4 Storage Efficiency Measure.
The metric at the module level is the sum of the scores of the following

applicable elements divided by the number of applicable elements. The
metric at the system level is the averaged value of all of the module

metric values.

(1) Storage requirements allocated to design.
The storage requirements for the system are to be allocated to the

individual modules during design. This measure is a binary measure of
whether that allocation is explicitly made (1) or not (0).

(2) Virtual storage facilities used.
The use of virtual storage or paging techniques enhances the storage

efficiency of a system. This is a binary measure of whether these

techniques are planned for and used (1) or not (0).

(3) Common data defined only once.
Often, global data or data used commonly are defined more than once.
This consumes storage. This measure is based on the number of varia-

bles that are defined in a module that have been defined elsewhere.

(4) Program segmentation. -. '-

Efficient segmentation schemes minimize the maximum segment length
to minimize the storage requirement. This measure is based on the

maximum segment length. It is to be applied during design when

estimates are available and during implementation.

(5) Dynamic memory management utilized.

This is a binary measure emphasizing the advantages of using dynamic

memory management techniques to minimize the amount of storage

required during execution. This is planned during design and used during
implementation.

C-a !l''



7-. 7. - - 7 -3, 1

Criteria: Effectiveness

(6) Data packing used.
While data packing was discouraged in EF.2 (5) in loops because of the %
overhead it adds to processing time, in general it is beneficial from a
storage efficiency viewpoint. This binary measure applied during imple-

mentation recognizes this fact.

(7) Storage optimizing compiler/assembly language used.

This binary measure is similar to EF.2 (2) except from the viewpoint of

storage optimization.

(8) Database files/libraries stored at only one node.
Avoiding multiple files/libraries increases system storage optimization.

C-42

. ..-'. ...

~ A- A.

. -.: . ..



Criteria: Functional Overlap

Metric: FO.1 Functional Overlap Measure.

This metric refers to the overlap of functional responsibility or computa-

tion between the two systems that must interoperate. The metric is the

sum of the scores of the following applicable elements divided by the

number of applicable elements.

(1) Number of duplicated functions in the system that are to interoperate.

When two systems must be made to interoperate, functions which are 'p

duplicated in both systems must be examined to determine any potential

conflict. This examination for function conflict will require additional

effort to assess the two functions and the impact each may have on the

other when the systems interoperate.
-*.' ;

(2) Number of duplicate functions to be deleted in one or the other system.

The presence of the same functions being implemented or accomplished

in both systems is not necessarily detrimental to interoperability, espec-

ially if each function remains independent of the other and there is no

need to communicate. However, if one of the systems is assigned unique

responsibility for that function, and the corresponding function is to be .

deleted from the other system, then the amount of work to achieve

interoperability is increased.

(3) Number of duplicated function pairs to be synchronized.

If the duplicated functions in each system must be synchronized, then

the effort to achieve interoperation will be greater than that in (2)

because the problems of synch- "ation are usually more complex than .

those of deleting one function. Various timing, format, content, and

operational considerations may arise while attempting synchronization of

the two systems.

C-43

5' ."

l='. .'.'S

-. - .. °•°-° . °. . . . . . . . . . . . ... S - . * . .. .. o 5. ,o- ° . , . ."

-~ ~ ~ ~ ~ ~~~ . . .... %°%....... "°. ,"..- ... °..... "... .. ... ... .-° °, .- "."2-' ".°
. 

,

. * S



Criteria: Functional Overlap

(4) Number of duplicated function pairs requiring redundancy management
logic to combine them.L
The most complex resolution of duplicated functions is the use of a
redundancy management scheme. This calls not only for intimate com-
munication between the duplicated functions, but also calls for complex
and intricate logic to resolve apparent differences, identify malfunctions,

and determine and implement a reconfiguration approach.

C-44.

1-.



Criteria: Functional Scope

Metric: FS.l Function Specificity

The degree to which all modules in the system perform single integral

well defined functions. The metric is the sum of the scores of the

following applicable elements divided by the number of applicable ele-

ments.

* (I) Number of functions performed per module.
A module ideally should perform a single integral function. This mea-

sure is based on the number of functions performed in a module.

*(2) Each module has code comments about functional description.

Comments about functions performed in the module are extremely valu-
able to the person who wants to reuse this module. The measure is

based on the number of modules which do not comply.

Metric: FS.2 Function Commonality

This metric refers to the usefulness, to other applications, of the func-

tions performed by the software. The metric is the sum of the scores of

the following applicable elements divided by the number of applicable

* elements.

* .(1) Is the function constructed in a manner which facilitates or encourages

-- 9-I..its use elsewhere either in part or in total?

The software constructed in the above manner tends to be more reus-
A able. This is a binary measure.

(2) Are the input quantities well defined?

* When input quantities are well defined, the reuse task is easier. This is

* a binary measure.

(3) Are the input formats well defined?

See explanation for (2) above.

C-45



Criteria: Functional Scope

(4) Are the outputs or database well defined and easy to interpret?
A similar explanation to (2) above is applicable here.

(5) Does the function performance satisfy one of the specified require-

ments?
This is an application dependent metric.

Metric: FS.3 Function Completeness
The degree to which a system performs a total function in terms of user

* need. This is an application depe1rdent metric.

(1) Number of function requirements satisfied in the specified requirements.
The metric is the number of user requirements satisfied divided by the
total number of user requirements. The value is computed for the
system metric.

.5-I C-46



Criteria: Generality'

Metric: GE.l Module Reference By Other Modules.

(1) Number of modules which are referenced by other modules.
This metric provides a measure of the generality of the modules as they

are used in the current system. A module is considered to be more

general in nature if it is used (referenced) by more than one module.
The number of these common modules divided by the total number of

* modules provides the measure.

Metric: GE.2 Implementation for Generality Checklist.
This metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) input, processing, output functions are not mixed in a single function.

A module which performs 1/O as well as processing is not as general as a
module which simply accomplishes the processing. This measure is based

on the number of modules that violate this concept at design and -

implementation.

(2) Application and machine dependent functions are not mixed in a single

module.

Any references to machine dependent functions within a module lessens
its generality. An example would be referencing the system clock for

timing purposes. This measure is based on the number of machine
dependent functions in a module.

(3) Processing not data volume limited.
A module which has been designed and coded to accept no more than

100 data item inputs for processing is certainly not as general in nature
as a module which will accept any volume of input. This measure is

based on the number of modules which are designed or implemented to

4< be data volume limited.

C-47



-' . I %'

Criteria: Generality

(4) Processing not data value limited.

A previously identified element, AM.2 (2) of Anomaly Management dealt

with checkumg input for reasonableness. This capability is required to

prevent providing data to a function for which it is not defined or its

degree of precision is not acceptable, etc. This is necessary capability

from an error tolerance viewpoint. From a generality viewpoint, the

smaller the subset of all possible inputs to which a function can be

applied the less general it is. Thus, this measure is based on the number

of modules which are data value limited.

C-4

,4,

. .. . . . . . . . . . .

. . .. . . . . . . . . . . . . . . .



Criteria: Independence

Metric: IDA1 Software System Independence Measure
* The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

*(1) Dependence on software system utility programs, system library routines,

and other system facilities.
The more utility programs, library routines, and other system facilities

that are used within a system, the more dependent the system is on that
software system environment. A SORT utility in one operating system is
unlikely to be exactly similar to a SORT utility in another. This

V.. measure is based on the number of references to system facilities in a
module divided by the total number of lines of code in the module.

(2) Common, standard subset of language used
The use of nonstandard constructs of a language that may be available
from certain compilers cause conversion problems when the software is
moved to a new software system environment. This measure represents
that situation. It is based on the number of modules which are coded in
a non-standard subset of the language. The standard subset of the
language is to be established durin3 design and adhered to during imple-

mentation.

Metric: ID.2 Machine Independence Measure
The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1) Programming language used available on other machines.
This is a binary measure identifying if the programming language used is
available (1) on other machines or not (0). This means the same version
and dialect of the language.

(2) Free from input/output references.
Input and output references bind a module to the current machine

conf iguration. Thus the fewer modules within a system that contain

C -49

-- %

A 1 . X %



Criteria: Independence

input and output references, the more localized the problem becomes
when conversion is considered. This measure represents that fact and is
based on the number of I/0 references within a module.

(3) Code is independent of word and character size
Instructions or operations which are dependent on the word or character
size of the machine are to be either avoided, or parametric, to facilitate
use on another machine. This measure, applied to the source code
during implementation, is based on the number of modules which containZ
violations to the concept of independence of word and character size.

(L)Data representation machine independent
The naming conventions (length) used are to be standard or compatible
with other machines. This measure is based on the number of modules
which contain variables which do not conform to standard data represen-
tations.

C-5



Criteria: Modularity

Metric: MO.2 Modular Implementation Measure.

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Hierarchical structure.

The measure refers to the modular implementation of the top down

design structure mentioned in 51.1 (1). The hierarchical structure ob-

tained should exemplify the following rule: interactions between mod-

ules are retricted to flow of control between a predecessor module and

its immediate successor modules. This measure is based on the number

of violations to this rule.

(2) Module size profile.

The standard module size of procedural statements can vary. 100

statements has been mentioned in the literature frequently. This mea-

sure is based on the number of procedural statements in a module.

(3) Controlling parameters defined by calling module.

The next four elements further elaborate on the control and interaction

between modules referred to by (1) above. The calling module defines

the controlling parameters, any input data required, and the output data

required. Control must also be returned to the calling module. This

measure is based on the number of calling parameters which are control

parameters. The next three are based on whether a rule is violated.

* -~ They can all be measured at design and implementation.

(4) Input data controlled by calling module.

See (3) above.

(5) Output data provided to calling module.
* . See (3) above.

C-51

. . . . . . . . . . .. . .. .. . . .. . .. .



Criteria: Moarity

(6) Control returned to calling module.

See (3) above.

(7) Modules do not share temporary storage.

This is a binary measure, (1) if modules do not share temporary storage

-~ and (0) if they do. It emphasizes the loss of module independence if

temporary storage is shared between modules.

(8) Each module represents one function.

Ideally, each module performs only one function.

Metric: MO.3 Modular Design Measure.

* The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

*..-

(1) Processes/f unct ions /modules have loose coupling.

In achieving a highly modular design it is essential to minimize the

relationships among modules. The goal is to design modules with low

coupling. The scale of coupling from worst to best is: 1) content

coupling, 2) common coupling, 3) external coupling, 4) control coupling,

5) stamp coupling, and 6) data coupling.

1) Content coupling - one module makes reference to the contents of

. Se1another module.
2) Common coupling - modules reference a shared global data struc-

ture.

3) External coupling modules reference the same externally declared

symbol.

4) Control coupling - one module passes elements of control as argu-

ments to another module.

5) Stamp coupling two modules reference the same data structure,

which is not global.

6) Data coupling - one module calls another and the modules are not

coupled as defined above (in I through 5).

C-52

.. .". - .

(1 Pr ........... os/moule have loos copig ""-"



- . . ...

Criteria: Modularity

i. (2) Processes/functions/modules have high cohesion.

In achieving a highly modular design it is essential to maximize the

-4- relationships among the elements of each module. The following are.-...-

relative values for seven types of cohesion:

COHESION TYPE VALUE

* 7) Functional 1.0

6) Informational 0.7

5) Communicational 0.5

4) Procedural 0.3

3) Classical 0.1
* 2) Logical 0.1

I) Coincidental 0.0

The following are descriptions of the seven types of cohesion.

1) Coincidental

No meaningful relationships among the elements of a module. k.

4.- . Difficult to describe the module's function(s).

2) Logical

Module performs (at each invocation) one of a class of reiated

functions (e.g., "edit all data").

Module performs more than one function.

3) Classical

Module performs one of a class of functions that are related in

time (Program procedure).

Module performs more than one function.

4) Procedural

* Module performs more than one function, where 'he functions

are related with respect to the procedure of the problem

(Problem procedure).

5) Communicational
Module has procedural strength; in addition, all of the elements

"communicate" with one other (e.g., reference same data or

C-53

A. I - - . . . *- - .



-. A. . * . * .

- Criteria: Modularity

pass data among themselves).

All functions use the same data.

6) Informational

Module performs multiple functions where the functions (entry

points in the module) deal with a single data structure.

* Physical packaging together of two or more modules having func-

tional strength.

- All functions use the same data.

7) Functional

* All module elements are related to the performance of a single

function.

Reference:

For a more detailed explanation of the terms used to describe cohesion and

coupling see "Reliable Software Through Composite Design", Myers,

Glenford 3.

C-54

.'

'2--

. . ,.. A-".*

. . .. . . . . . . . . . . .... ... ' - A'.. -'

-. '. A --.-.-. . . . . . . . .



Criteria. Operability

Metric: OP.1 Operability Checklist.
The metric is the sum of the scores of the following applicable elements

divided by the number of applicable e .ements.

(1) All steps of operation described (normal and alternative flows).

This binary measure identifies whether the operating characteristics have

been described in the requirements specification, and if this description

has been transferred into an implementable description of the operation

(usually in an operator's manual). The description of the operation

should cover the normal sequential steps and all alternative steps.

(2) All error conditions and responses appropriately described to operator.
The requirement for this capability must appear in the requirements

specification, must be considered during design, and coded during imple-

mentation. Error conditions must be clearly identified by the system.

Legal responses for all conditions are to be either documented and/or
prompted by the system. This is a binary measure to trace the evolution

and implementation of these capabilities.

(3) Provisions for operator to interrupt, obtain operational status, save,

modify, and continue processing.

The capabilities provided to the operator must be considered during the
krequirements phase and then designed and implemented. Examples of

operator capabilities include halt/resume and check pointing. This is a

binary measure to trace the evolution of these capabilities.

(4i) Number of operator actions reasonable (requires execution).

The number of operator errors can be related directly to' the number of

actions required during a time period. This measure is based on the

amount of time spent requiring manual operator actions divided by the

total time required for the job.

(5) Job set up and tear down procedures described.

The specific tasks involved in setting up a job and completing it are to

C-55



Criteria: Operability

be described. his is usually documented during the implementation

phase when the final version of the system is fixed. This is a binary

measure of the existence of that description. N.

(6) Hard copy log of interactions maintained.
This is a capability that must be planned for in design and coded during

implementation. It assists in correcting operational errors, improving

efficiency of operation, etc. This binary measure identifies whether it is -

considered in the design and implementation phases (1) or not (0).

*(7) Operator messages consistent and responses standard.

This is a binary measure applied during design and implementation to
insure that the interactions between the operator and the system are

'Ssimple and consistent. Operator responses such as YES, NO, GO, STOP,
are concise, simple, and can be consistently used throughout a system.
Lengthy, differently formatted responses not only provide difficulty to
the operator but also require complex error checking routines.

(8) Access violations and responses appropriately described.

Appropriate decriptions and a log of access violations will enable the

operator to clearly assess the system status.

(9) Capability for operator to obtain network resource status.
This capability is essential for managing individual nodes resources and

for providing services which are dependent on other nodes.

(10) Capability to select different nodes for different types of processing or

for different types of information retrieval.
This provision expands the virtual capability and versatility of the node.

C -56

5V.



Criteria: Reconf igurability

Metric: RE.A Restructure Checklist.
The metric is the sum of the scores given to the following elements
divided by the number of applicable elements.

(1) Configuration of communication links is such that failure of one
node/link will not disable communication among other nodes.

-Alternate communication paths ensure the ability to reconfigure the
* network in the event of a single point failure.

(2) Specific requirements for maintaining data base integrity under anoma-

lous conditions.
In a network where information is distributed among different nodes, and

* - sometimes duplicated at different nodes, it is essential to maintain the
integrity of the total database when conditions are non-normal.

(3) Provisions for maintaining database integrity under anomalous conditions.
A scheme is required for implementing the requirements referenced in

-. (2) during the Preliminary Design phase.

(4) Node can rejoin the network when it has been recovered.
It is desirable to have a node rejoin the network without interrupting
basic or critical network functions.

V .

(5) Data replicated at two or more distinct nodes.
Information, especially critical data, should be replicated within the

system to insure the ability to reconfigure.

C -57



criteria: Self Descriptiveness

Metric: SDAl Quantity of Comments.
The metric is the number of comment lines divided by the total number

of lines in each module. Blank lines are not counted. The average value e

is computed for the system level metric.

(1) Number of lines of source code and non-blank comments.

Metric: SD.2 Effectiveness of Comments Measure.
The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1) Modules have standard formatted prologue comments.
This information is extremely valuable to new personnel who have to

work with the software after development, performing maintenanc
testing, changes, etc. The measure at the system level is based on the

number of modules which do not comply with a standard format or do

not provide complete information.

(2) Comments set off from code in uniform manner.

Blank lines, bordering asterisks, specific card columns are some of the

techniques utilized to aid in the identification of comments. The meas-

ure is based on the number of modules which do not follow the conven- -

tions established for setting off the comments.

(3) All transfers of control and destinations commented.

This form of comment aids in the understanding and ability to follow the
logic of the module. The measure is based on the number of modules

which do not comply.

(4) All machine dependent code commented.

Comments associated with machine dependent code are important not
only to explain what is being done but also serves to identify that

4 portion of the module as machine dependent. The metric is based on the

C -58



Criteria: Self Descriptiveness

'A number of modules which do not have the machine dependent code

commented.

(5) All non-standard KOL statements commented.

* See explanation for (4) above.

(6) Attributes of all declared variables commented.

The usage, properties, units, etc., of variables are to be explained in

comments. The measure is based on the number of -modules which do

not follow this practice.

(7) Comments do not just repeat operation described in language.

Comments are to describe why, not what. A comment, increment A by

1, for the statement A=A+l provides no new information. A comment,

increment the table look-up index, is more valuable for understanding

the logic of the module. The measure is based on the number of

modules in which comments do not explain the why's.

Metric: SD.3 Descriptiveness of Language Measure.

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) High order language used.

An HOL is much more self -descriptive than assembly language. The
measure is based on the number of modules which are implemented, in

whole or part, in assembly or machine language.

(2) Variable names (mnemonics) descriptive of physical or functional pro-

perty represented.

While the metric appears very subjective, it is quite easy to identify if

variable names have been chosen with self -descriptiveness in mind.

C-59

.12.



Criteria: Self Descriptiveness

Three variable names such as NAME, POSIT, SALRY are far better and

more easily recognized as better than Al, A2, A3. The measure is based

on the number of modules which do not utilize descriptive names.

* .(3) Source code logically blocked and indented.

Techniques such as blocking, paragraphing, indenting for specific con-

structs are well established and are to be followed uniformly with a

system. This measure is based on the number of modules which do not
comply with a uniform technique.

(4) One statement per line.

The use of continuation statements and multiple statements per line
causes difficulty in reading the code. The measure is the number of

* continuations plus the number of multiple statement lines divided by the

total number of lines for each module and then averaged over all of the

modules in the system.

(5) Standard format for organization of modules.

All modules should be similar in structure to ease understanding.

(6) No language keywords used as names. -

Names should be unique and not include language keywords.

C-6

N

-S%



* -... * - - - - * 7 I - . ' * . -.

Criteria: Simplicity

Metric: SI Design Structure Measure.

The metric is the sum of the scores of the applicable elements divided
by the number of applicable elements.

(1) Design organized in top down fashion.

A hierarchy chart of system modules is usually available or easy to

construct from design documentation. It should reflect the accepted

notion of top down design. The system is organized in a hierarchical

tree structure, each level of the tree represents lower levels of detail

descriptions of the processing.

(2) Module independence.

The processing done within a module is not to be dependent on the

source of input or the destination of the output. This rule can be
applied to the module description during design and the coded module

during implementation. The measure for this element is based on the

number of modules which do not comply with this rule.

(3) Module processing not dependent on prior processing.

The processing done within a module is not to be dependent upon know-

ledge or results of prior processing, e.g., the first time through the

module, the nth time through, etc.. This rule is applied as above axc-

design and implementation.

(4) Each module description includes input, output, processing, limitations.

Documentation which describes the input, output, processing, and limita-

tions for each module is to be developed during design and available

during implementation. The measure for this element is based on the
numbsmr of modules which do not have this information documented.

C-61



:*- -. W.-I

Criteria: Simplicity

(5) Each module has single entrance, single exit.

Determination of the number of modules that violate this rule at design

and implementation can be made and is the basis for the metric.

(6) Size of data base.

The size of the data base in terms of the number of unique data items

contained in the data base relates to the design structure of the soft-

ware system. A data item is a unique data element for example an

individual data entry or data field.

(7) Compartmentalization of data base

The structure of the data base also is represented by its modularization

or how it is decomposed. The size determined in (6) above divided by

the number of data sets provided this measure. A data set corresponds

to the first level of decomposition of a data base, e.g., a set in a
CODASYL data base, a record in a file system, a COMMON in

FORTRAN, or a Data Block in a COMPOOL system -

(8) Programming standard developed.

A standard for programming practices will enhance uniformity in module
development.

(9) Module descriptions include identification of module interfaces.
Both internal and external interfaces need to be identified.

Metric: SI.2 Structured Language or Preprocessor.

(1) Structured language or preprocessor used.

The use of a structured language or a preprocessor simplifies the pro-

gramming task.

C-62

.4" %

.. ..

'." . -. '." ,'-'."-- . -- ', - .- .?.. - --*-.- -..S- .-.. .1- " . ... '- ..... " '.. . -. T--.. ? - -4 .? .-- , -. '.- - .'- ..



Criteria: Simolicity

Metric: S1.3 Data and Control Flow Complexity Measure

(1) Complexity measure.
(a) Number of decision points

(b) Number of branching points

* .*The metric measure is the reciprocal of the number branching and
decision points.

Metric: 51.4 Coding Simplicity Measure.
The metric at the system level is an averaged quantity of all the module -

*measures for the system. The module measure is the sum of the scores

of the following applicable elements divided by the number of applicable
- elements.

(1) Module flow top to bottom.

This is a binary measure of the logic flow of a module. If it f lows top

to bottom, it is given a value of 1, if not a 0.

*(2) Negative Boolean or complicated compound Boolean expressions used.

Compound expressions involving two or more Boolean operators and neg-
.4ation can of ten be avoided. These types of expressions add to the

complexity of the module. The measure is based on the number of these
complicated expressions per executable statement in the module.

(3) Jumps in and out of loops.

Loops within a module should have one entrance and one exit. This

measure is based on the number of loops which comply with this rule
divided by the total number of loops.

(4) Loop index modified.
Modification of a loop index not only complicates the logic of a module

~ but causes severe problems while debugging. This measure is based on
the number of loop indices which are modified divided by the total

A number of loops.

C-63

% 't4% 1



Criteria: Simplicity

(5) Module is not self-modifying.

If a module has the capability to modify its processing logic it becomes

very difficult to recognize what state it is in when an error occurs. In

addition, static analysis of the logic is more difficult. This measure

emphasizes the added complexity of self-modifying modules.

(6) Number of statement labels.

This measure is based on the premise that as more statement labels are

added to a module the more complex it becomes to understand.

(7) Nesting level.

The greater the nesting level of decisions or loops within a module, the

greater the complexity. The measure is the reciprocal of the maximum

nesting level.

(8) Number of branches.

The more paths or branches that are present in a module, the greater-

the complexity. This measure is based on the number of decision

statements per executable statements.

Ct (9) Statement simplicity level.

This measure is based on the number of declarative and data manipula-

4 tion statements per executable statement.

(10) Variable mix in a module.
From a simplicity viewpoint, local variables are far better than global

variables. This measure is the ratio of internal (local) variables to total

(internal (local) plus external (global)) variables within a module.

(11) Variable density.

The more variables used in a module the greater the complexity of that

module. This measure is based on the number of variable uses in a

module divided by the maximum possible uses.

C-64

* . . . . . . - - . . .

.nsin -leve. .



Criteria: Simplicity

(12) Single use of variables.
Each variable should have a singular use.

(13) Code written according to programming standard.
Uniform module construction and coding conventions aid in minimizing

complexity.

(14) Macros and subroutines used to avoid repeated and redundant code.
Use of macros and subroutines is yet another way of simplifying code.

C-65

%

A..............................................................



Criteria: Specif icity

Metric: SPAI Scope of Function Measure.
The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Input density.

The fewer the input parameters, the more likely the module is singular

in function.

(2) Output density.
The smaller the ratio of output parameters to output values, the more
likely the module is singular in function.

*(3) Same function cannot be accomplished by multiple variant forms.

If the same function could be accomplished by multiple different mod-

ules, the module would not be singular in function.

C -66



Criteria: System Accessibility

Metric: SA.1 Access Control Checklist.

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) User 1/0 access controls provided.

Requirements for user access control must be identified during the

requirements phase. Provisions for identification and password checking

must be designed and implemented to comply with the requirements.

This binary measure identifies whether attention has been placed on this

area.

(2) Data base access controls provided.
* This binary measure identifies whether requirements for data base con-

trols have been specified and designed and the capabilities implemented.

Examples of data base access controls are authorization tables and

privacy locks.

(3) Memory protection across tasks provided.

Similar to (1) and (2) above, this measure identifies the progression from

a requirements statement to implementation of memory protection

across tasks. Examples of this type of protection, often times provided

to some degree by the operating system, are preventing tasks from

invoking other tasks, tasks from accessing system registers, and the use .

of privileged commands.

(4) Network access controls provided.

* , Similar to the above, this metric identifies the need for access control
for the network to protect both the operation of the network and

individual nodes.

C-67-

"Soh-



. ., o.

Criteria: System Accessibility

Metric: SA.2 Access Audit Checklist.

The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Provisions for recording and reporting access to a node.

A statement of the requirement for this type capability must exist in

the requirements specification. It is to be considered in the design

specification, and coded during implementation. Examples of the provi-

sions which might be considered would be the recording of terminal and

processor linkage, data file accesses, and jobs run by user identification

and time.

(2) Provisions for immediate indication of access violations.

In addition to (1) above, access audit capabilities required might include

not only recording accesses but immediate identification of unauthorized

accesses, whether intentional or not.

C,-68

ee... .

..................................................
. j •



Criteria: System Clarity

Metric: SC.I Interface Complexity.

A software program -should reduce the interface complexity and promote

the system clarity. The metric is the sum of the scores of the following

applicable elements divided by the number of applicable elements.

(1) Number of data items (variable names) used to specify the interface.

The measure is based on the number of data items specified by the

interface.

(2) Number of data items passed implicitly across interface via common

global data without adequate comments.

-. The measure is based on the number of data items which are passed

implicitly across the interface and without adequate comments explan- -

tion.

(3) Number of nesting levels in interface.

*-' The greater the nesting level of the interface, the greater the interface

complexity. The measure is the reciprocal of the number of nesting

levels.

(4) Number of interface data items with negative qualification.

The procedures returning a "TRUE" upon a failure tend to increase the

interface complexity.

(5) Number of data items passed across module interface via module argu-

ments and values or via common global data.

The more data items passed across the interface the more complex tne

interface. The measure is the reciprocal of the number of data items

-" . passed across the interface.

C-69

• - , . . °', .% ' -.'• . . ,. - - • " - -. .

." , ", '- -- , ," ... ' .'-," " .'-,'.""-"".'.- ". ' • . " '. ... " ." ,' ..7.." "-<' '% '-.. .-. ",".... .,.. . .... .- "-.. . . . .. ",..*...'



* -- -.. . . . . . . . . , - . . o .
P ..

Criteria: System Clarity

(6) Module interfaces established by common control blocks or common data

blocks or common overlay region of memory or common I/O devices or

global variable names and with adequate comments.

The interface established by common control blocks or common global

data is more complex than the interface established by parameter lists.

This is a binary measure.

(7) Modules do not modify other modules.

The degree of coupling is higher for modules that modify other modules.
The measure is based on the number of modules which do not comply

with the rule.

Metric: SC.2 Program Flow Complexity.

Software programs should reduce the program flow complexity and pro-

mote the system clarity. The metric is the sum of the scores of the

following applicable elements divided by the number of applicable ele-
ments.

(1) Number of possible unique excution paths.

The measure is the reciprocal of the number of unique execution paths.

(2) Number of IF statements.

The measure is the reciprocal of the number of IF statements.

(3) Number of function CALLs in each module.

The more function CALLs are present in a module, the greater the

complexity. The measure is the reciprocal of the number of function

CALLs.

(4) Number of control variables used to direct execution path selection.
The measure is the reciprocal of the number of control variables.

C-70

4 .. ,



Criteria: System Clarity

(5) Number of DO groups.
The measure is the inverse of the number of DO groups.

(6) Each module has code comments that indicate called-by modules and

calling modules.
The measure is based on the number of modules which do not comply.

Metric: SC.3 Application Functional Complexity.

Software program should reduce the application functional complexity

and promote the system clarity. The metric is the sum of the scores of -

the following applicable elements divided by the number of applicable

elements.

(1) Separate input/output from computational functions.

The measure is based on the number of modules that violate this rule.

(2) Modules do not share temporary storage locations.

The measure is based on the number of modules that violate this rule.

(3) Separate database-management routines and storage-management rou-

tines.
The measure is based on.the number of modules that violate this rule.

(4) Common function is not distributed among different modules.
Common functions distributed among several different modules will tend

to obscure the program logic in each module. This is a binary measure.

(5) Module is not made to do too many (related but different) functions.

Too many related but different functions in a module will tend to

obscure the logic with tests to distinguish among the various functions.

-. This is a binary measure.

C-71

.... . ... . ..

--
A.. ."



Critria: System Cliarity

Metric: SC.4 Communication Complexity.

Software programs should reduce the communication complexity and

promote the system clarity. The metric is the sum of the following

applicable elements divided by the number of applicable elements.

(1) Number of formal parameters each routine.

The measure is the number of parameters divided by the number of

global variables.

(2) Common global variable used each module.

The measure is the reciprocal of the number of common global variables

used.

(3) Routine-Global-Routine data binding.

The measure is based on the number of global variables which are

modified by one routine and referenced to other routines.

(4) Module connections are established by referring to other modules by

their functional names, not internal elements of other modules.

Modules whose connections are established by referring to other modules

by their functional names are more loosely coupled than are modules

whose connections refer to internal elements of other modules. The

measure is based on the number of modules which do not comply.

(5) Communication between modules is by passing data, not by passing

control elements.

The measure is based on the number of modules which do not comply.

Metric: SC.5 Structure Clarity.

To remove the program impurities, to improve the structure clarity, and

make software easier to understand. The metric is a measure reflecting
this improvement and is the sum of the following applicable elements

divided by the number of applicable elements.

C-72



Criteria: System Clarity

(1) Do not compute the same value more than once.
Whenever a specific combination of terms must be used more than once
a new name should be assigned to that combination and that new name
should be utilized in the subsequent occurrences of that term. The
binary metric measure reflects this readability improvement.

(2) Do not insert a statement which never needs to be executed.
To remove the unwarranted assignment statement and improve the com-
prehensibility of program. This is a binary measure to reflect this

4. improvement.

k(3) Maintain a constant meaning for each variable.
Modules should not use the same variable to represent different types of
values in different portions of program to improve the understandability.
This is a binary measure to reflect this improvement.

(4) Eliminate unnecessary intermediate variables.

* aSe explanation for (2) above.

-C-7

4.:



% F. 
r UU

Criteria: System Compatibility

Metric: SY. I Communication Compatibility Checklist.
The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Same I/0 transmission rates in both systems.
If the two systems have incompatible transmission rates, extra effort

Fwill be required to avoid buff er overruns, data overruns, and lost data.
Thus, the effort to interoperate in this case is increased.

(2) Same communication protocol in both systems.

Compatible communication protocols assures the systems can begin to
converse. If the protocols are incompatible, then additional work will be

V required so that the systems can initiate mutual communication.

(3) Same message content in both systems.
If the content of the messages are not the same, that is, the same units,

I. the same variable, the same reference points, and the same reference

structure, then the message will have a meaning to the r,,ceiver differ-
ent from that intended by the sender.

(4) Same message structure and sequence in both systems.
Even though the protocols may be compatible, and the data of mutual
format and type, interoperation may be impossible if the message struc-
ture and message sequences are not compatible.

Metric: SY.2 Data Compatibility Checklist.

F The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Is data in both systems in the same format (ASCII, EBCDIC....
The format of the data transmitted between the systems should be

- identical, otherwise, additional effort must be spent converting the

C-7



Criteria: System Compatibility

format in one system; or a hardware or software reformatter must be LJ.

designed and implemented.

(2) Same data base structure in both systems.

If the data base structures are compatible, then consistent accessing and

indexing interpretations are possible, lessening the chance of incom-

patibilities which would increase the effort to achieve interoperation.

(3) Same data base access techniques in both systems.

This metric component is related to (2), but it is unique in that it

°_ assures that the accessing variables will be as similar as possible

between the systems, reducing the conversion necessary between sys-

tems.

Metric: SY.3 Hardware Compatibility Checklist.

The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Same word length in both systems.

If both systems use the same standard word length, then problems of

differing accuracy and conversion are removed.

(2) Same interrupt structure in both systems. .

If both systems use computers with the same interrupt structure, it is

likely that they will be mutually compatible in their interfaces with the

real world of sensors, etc.

(3) Same instruction set in both systems.

If both systems use computers with identical instruction sets, then they

truly "talk the same language." This compatibility should contribute to

reduced effort to achieve interoperation between the two systems.

C-75

4.. , V. -' .... . -. -. - . ... . . '



Criteria: System Comptibility
-_4.

Metric: SY.4 Software Compatibility Checklist.

The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Same source language in both systems.

If the source language used in the two systems is the same, then many

compatibilities are already provided; if not, the effort to interoperate

will increase due to resolution of language feature discrepancies.

(2) Same operating system in both systems.

- Identical operating systems will provide assurance of consistent features

and methods of operation. Thus, the effort required to interoperate

should be reduced.

(3) Same support software in both systems.

If identical support software is used for the systems that must inter-

operate, it is likely that both may be constructed in much the same way.

The communication necessary to service both systems will be simplified.

Finally, duplicate support software centers may provide greater reli- , -

ability, or, alternatively, the possibility for cost reductions.

Metric: SY.5 Documentation for Other Systems. ".4- "

(1) Is the other system documentation available in a form that is up-to-date,

complete, and clearly organized and written?

Many questions about the other system will arise in achieving interoper-

ability, and the most efficient and practical way of answering them is

the availability of documentation on the other system. For the docu-

mentation to be useful, however, it must meet certain requirements. It

must reflect the other system as it currently exists, or as it will exist at ..

the time of interoperation; so the documentation must be up-to-date., .'-•,

The documentation must alsc be complete, at least to the extent neces-

'* sary to answer all questions relating to interoperability. But, even

C-76

. ." . . . . . . . . . .. . . ... -' . .. . . ." " ''.e '€"
- " ' ' * ' "  '  '  '  '  "

. '. .- ' ". ." ".

,.- -. -.. . , . , ,, - . . ; . - - .- . - - - .-- .- 4 ,- .~. . ,, .- .-. .- .. " - . - . . - . • • .,'-.- . .' *-,'. . *,' ' .', A . '- '.'- .'- . ,% (, ~4 . 4.% "- , % " -' " '- V.'" " -A' " ' ." -' "," , ". • •



Criteria: System Compatibility

the most complete and up-to-date documents will be relatively useless if
they are not clearly organized and clearly written. The reader must be

able to find his way efficiently to the answer he needs, and when found,

the answer must be stated clearly. Otherwise, the time lost to locate
and understand the information will be excessive and it is likely the
reader will make an assumption for his purposes. Once again, the result -

is likely to be additional interoperability problems.

C-'77



* Criteria: Traceaitbility

Metric: TR.I Cross Reference.

(1) Cross reference relating functions/modules to requirements.
During design, the identification of which itemized requirements are
satisfied in the design of a module are documented. A traceability
matrix is an example of how this can be done. During implementation,

which itemized requirements are being satisfied by the module imple-
mentation are to be identif ied. Some form of automated notation,
prologue comments or imbedded comments, is used to provide this cross
ref erence. The binary metric is the identification of a tracing of
requirements into design and into code.

'C-7



Criteria: Training

Metric: TN.l Training Checklist.

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Lesson plans/training material developed for operators, end users, main-

tainers.

. This is a binary measure of whether this type documentation is provided

during the implementation phase.

(2) Realistic simulated exercises provided. 4

This is a binary measure of whether exercises, which represent the

operational environment, are developed during the implementation phase

for use in training.

(3) Sufficient 'help' and diagnostic information available on-line.

- This is a binary measure of whether the capability to aid the operator in

familiarization with the system has been designed and built into the

system. Provision of a list of legal commands or a list of the sequential

'* steps involved in a process are examples.
o ..

• (4) Selectable levels of aid and guidance for users of different degrees of

expertise.

" This is a binary measure of multi-level capability for user familiariza-

tion.

C-/9

-~~~~~~~. . . ...--".". ... ..--..... ....-..'-...'....,....-'.... - . - . -....... .-. : . -. . -.-.... --:.:. - .... ~~~~ . .*............ . .. .. • . •.~ ~ ~~~.............< .. , .............-. .,.,-.-........-.....:...-.:-.. .... ........ :.-



Criteria: Virtuality

Metric: yR. System/Data Independence Checklist.
This metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Specific requirements for virtual storage structure.

Requiring a virtual storage structure is the key to providing the user

with a virtual system.

(2) Provisions for virtual storage structure (user can obtain data without

knowing identity/location of storage device).

4 During Preliminary Design, a scheme is required to implement the
requirements referenced in (1). The scheme may be elaborate if data is

- widely distributed within the network.

(3) Users can manipulate data as if it were not replicated elsewhere in the

system.

This measure refers to potential configuration management problems in a

network where the same data is replicated at different nodes.

(4) Each user can utilize the system as though it were dedicated to that

user.

Presenting each user with a system which is virtually dedicated to that

user maximizes the capabilities available to the user.

(5) User is presented with a complete logical system without regard to
physical topology.

- . Lifting the requirement for the user to know the physical topology of
- . the system simplifies the user's task with respect to the system.

C-80

* 'P,4,



The system level metric is an average of all module measures. The

module measure is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Path coverage.

Plans for testing the various paths within a module should be made

during design and test cases actually developed during implementation.

This measure identifies the number of paths planned to be tested divided__

by the total number of paths.

(2) input parameters boundary tested.

The other aspect of module testing involves testing the input ranges to

the module. This is done by exercising the module at the various

boundary values of the input parameters. Plans to do this must be

specified during design and coded during implementation. The measure

is the number of parameters to be boundary tested divided by the total

number of parameters.

Metric: VS.2 Integration Testing Measure.
The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Module interfaces tested.

One aspect of integration testing is the testing of all module -to-module

* interfaces. Plans to accomplish this testing are prepared during design

Snsand the tests are developed during implementation. The measure is

based on the number of interfaces to be tested divided by the total

number of interfaces.

C-81

• --S



Criteria: Visibility

(2) Performance requirements (timing and storage) coverage.

The second aspect of integration testing involves checking for com-
"- pliance at the module and subsystem level with the performance require-

ments. This testing is planned during design and the tests are developed

during implementation. The measure is the number of performance

requiri-ments to be tested divided by the total number of performance

requirements.

Metric: VS.3 System Testing Measure.

The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Module coverage (for all test scenarios).

One aspect of system testing which can be measured as early as the

design phase is the equivalent to path coverage at the module level. For
*. . all system test scenarios planned, the percent of all of the modules to

be exercised is important.

(2) Identification of test inputs and outputs in summary form.

The results of tests and the manner in which these results are displayed

are very important to the effectiveness of testing. This is especially

true during system testing because of the potentially largq volume of

input and output data. This binary measure simply identifies if the

capability exists to display test inputs and outputs in a summary fashion.

The measure can be applied to the plans and specifications in the design

phase and the development of this capability during implementation. -

'C.-

, .%. C-82-'

, .. . .



4'1111 lj' JC 11 J 11 l!

MISSION
* Of

Rame Air Development Center
RAV9C P)tn6 and executes 'Le/seawch, devetopinent, -tes-t and
4etec-ted acquiiLtion p'togkams in 6u.ppott of Command, Cont~ot* Communicoation.6 and InteZ1t.gence (C1 cvtie.. Technicat
and enginee~inI suppott~ within teus o6 technicaZ competence
is p~'wvided to ESV PuLgPtam O46ce,6 (POs) and othe't ESP
eiCement6. The p'inciLpaz techn-Lcati. mLion v~eau a/te

* ~commuctonze, etec.tiwmagnetic guidlance and cont~oZ, 'swt-
veL&anc~e o4 qttound and ae.'o~pace ob -ject6, inteZ.&Lence datta
cotection and handP)ing, .in~o~uation .6y.6tem technoeogq,

* £onaesphvtic pitopagation, .6oZ-id s-tate scences6, mictowave
PhYs-Cc6 and etect~onic A'etiabitty, maintainab~ty and

* compatibiZtt.



0

''1'Eu

0

1

'A
*

,2

* A
r

* I
A


